【題目】如圖,二次函數的圖象交軸于、兩點,交軸于點,點的坐標為,頂點的坐標為.
(1)求二次函數的表達式和直線的表達式;
(2)點是直線上的一個動點,過點作軸的垂線,交拋物線于點,當點在第一象限時,求線段長度的最大值;
(3)在拋物線上存在異于、的點,使中邊上的高為,請直接寫出點的坐標.
【答案】(1);;(2);(3),
【解析】
(1)可設拋物線解析式為頂點式,由B點坐標可求得拋物線的解析式,則可求得D點坐標,利用待定系數法可求得直線BD解析式;
(2)設出P點坐標,從而可表示出PM的長度,利用二次函數的性質可求得其最大值;
(3)過Q作QG∥y軸,交BD于點G,過Q和QH⊥BD于H,可設出Q點坐標,表示出QG的長度,由條件可證得△DHG為等腰直角三角形,則可得到關于Q點坐標的方程,可求得Q點坐標.
解:(1)設二次函數的表達式為.
點在該二次函數的圖象上,
,
解得,
∴,
該二次函數的表達式為.
因為點在軸上,所以可令,解得.
設直線的表達式為,
把代入得,解得,
直線BD的表達式為.
(2)如圖:
設點的橫坐標為,則,
∴.
∵,則當時,PM有最大值,
的最大值為.
(3)如圖,過Q作QG∥y軸交BD于點G,交x軸于點E,作QH⊥BD于H
設Q(x,-x2+2x+3),則G(x,-x+3),
∴QG=|-x2+2x+3-(-x+3)|=|-x2+3x|,
∵△BOD是等腰直角三角形,
∴∠DBO=45°,
∴∠HGQ=∠BGE=45°,
當△BDQ中BD邊上的高為時,即QH=HG=,
∴QG==4,
∴|-x2+3x|=4,
當-x2+3x=4時,△=9-16<0,方程無實數根,
當-x2+3x=-4時,解得x=-1或x=4,
∴點的坐標為:,;
∴綜上可知存在滿足條件的點Q,其坐標為(-1,0)或(4,-5).
科目:初中數學 來源: 題型:
【題目】探究活動一:
如圖1,某數學興趣小組在研究直線上點的坐標規(guī)律時,在直線AB上的三點A(1,3)、B(2,5)、C(4,9),有kAB==2,kAC==2,發(fā)現kAB=kAC,興趣小組提出猜想:若直線y=kx+b(k≠0)上任意兩點坐標P(x1,y1),Q(x2,y2)(x1≠x2),則kPQ=是定值.通過多次驗證和查閱資料得知,猜想成立,kPQ是定值,并且是直線y=kx+b(k≠0)中的k,叫做這條直線的斜率.
請你應用以上規(guī)律直接寫出過S(﹣2,﹣2)、T(4,2)兩點的直線ST的斜率kST= .
探究活動二
數學興趣小組繼續(xù)深入研究直線的“斜率”問題,得到正確結論:任意兩條不和坐標軸平行的直線互相要直時,這兩條直線的斜率之積是定值.
如圖2,直線DE與直線DF垂直于點D,D(2,2),E(1,4),F(4,3).請求出直線DE與直線DF的斜率之積.
綜合應用
如圖3,⊙M為以點M為圓心,MN的長為半徑的圓,M(1,2),N(4,5),請結合探究活動二的結論,求出過點N的⊙M的切線的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數的圖象與x軸交于A、B兩點,B點的坐標為(3,0),與y軸交于點C(0,-3),點P是直線BC下方拋物線上的一個動點.
(1)求二次函數解析式;
(2)連接PO,PC,并將△POC沿y軸對折,得到四邊形.是否存在點P,使四邊形為菱形?若存在,求出此時點P的坐標;若不存在,請說明理由;
(3)當點P運動到什么位置時,四邊形ABPC的面積最大?求出此時P點的坐標和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】正方形ABCD的邊長為2,將射線AB繞點A順時針旋轉α,所得射線與線段BD交于點M,作CE⊥AM于點E,點N與點M關于直線CE對稱,連接CN.
(1)如圖,當0°<α<45°時:
①依題意補全圖;
②用等式表示∠NCE與∠BAM之間的數量關系:___________;
(2)當45°<α<90°時,探究∠NCE與∠BAM之間的數量關系并加以證明;
(3)當0°<α<90°時,若邊AD的中點為F,直接寫出線段EF長的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面是“作已知三角形的高”的尺規(guī)作圖過程.
已知: .
求作: 邊上的高
作法:如圖,
(1)分別以點和點為圓心,大于的長為半徑作弧,兩弧相交于, 兩點;
(2)作直線,交于點;
(3)以為圓心, 為半徑⊙O,與CB的延長線交于點D,連接AD,線段AD即為所作的高.
請回答;該尺規(guī)作圖的依據是___________________________________________________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=3cm.動點P從點A出發(fā),以cm/s的速度沿AB方向運動到點B.動點Q同時從點A出發(fā),以1cm/s的速度沿折線ACCB方向運動到點B.設△APQ的面積為y(cm2).運動時間為x(s),則下列圖象能反映y與x之間關系的是 ( )
A. B. C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com