【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,BC與⊙O相交于點D,點E在⊙O上,且DE=DA,AE與BC相交于點F.
(1)求證:FD=DC;
(2)若AE=8,DE=5,求⊙O的半徑.
【答案】(1)證明見解析;(2).
【解析】
(1)由切線的性質(zhì)得BA⊥AC,則∠2+∠BAD=90°,再根據(jù)圓周角定理得∠ADB=90°,則∠B+∠BAD=90°,所以∠B=∠2,接著由DA=DE得到∠1=∠E,由圓周角定理得∠B=∠E,所以∠1=∠2,可判斷AF=AC,根據(jù)等腰三角形的性質(zhì)得FD=DC;
(2)作DH⊥AE于H,如圖,根據(jù)等腰三角形的性質(zhì)得AH=EH=AE=4,再根據(jù)勾股定理可計算出DH=3,然后證明△BDA∽△EHD,利用相似比可計算出AB=,從而可得⊙O的半徑.
(1)證明:∵AC是⊙O的切線,
∴BA⊥AC,
∴∠2+∠BAD=90°,
∵AB是⊙O的直徑,
∴∠ADB=90°,
∴∠B+∠BAD=90°,
∴∠B=∠2,
∵DA=DE,
∴∠1=∠E,
而∠B=∠E,
∴∠B=∠1,
∴∠1=∠2,
∴AF=AC,
而AD⊥CF,
∴FD=DC;
(2)解:作DH⊥AE于H,如圖,
∵DA=DE=5,
∴AH=EH=AE=4,
在Rt△DEH中,DH= =3,
∵∠B=∠E,∠ADB=∠DHE=90°,
∴△BDA∽△EHD,
∴=,即=,
∴AB=,
∴⊙O的半徑為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車都從A地前往B地,如圖分別表示甲、乙兩車離A地的距離S(千米)與時間t(分鐘)的函數(shù)關(guān)系.已知甲車出發(fā)10分鐘后乙車才出發(fā),甲車中途因故停止行駛一段時間后按原速繼續(xù)駛向B地,最終甲、乙兩車同時到達B地,根據(jù)圖中提供的信息解答下列問題:
(1)甲、乙兩車行駛時的速度分別為多少?
(2)乙車出發(fā)多少分鐘后第一次與甲車相遇?
(3)甲車中途因故障停止行駛的時間為多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,破殘的圓形輪片上,弦AB的垂直平分線交弧AB于點C,交弦AB于點D.已知AB=24cm,CD=8cm.
(1)求作此殘片所在的圓(不寫作法,保留作圖痕跡)
(2)求殘片所在圓的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,四邊形ABCD為正方形,點E,F分別在AB與BC上,且∠EDF=45°,易證:AE+CF=EF(不用證明).
(1)如圖②,在四邊形ABCD中,∠ADC=120°,DA=DC,∠DAB=∠BCD=90°,點E,F分別在AB與BC上,且∠EDF=60°.猜想AE,CF與EF之間的數(shù)量關(guān)系,并證明你的猜想;
(2)如圖③,在四邊形ABCD中,∠ADC=2α,DA=DC,∠DAB與∠BCD互補,點E,F分別在AB與BC上,且∠EDF=α,請直接寫出AE,CF與EF之間的數(shù)量關(guān)系,不用證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,BE平分∠ABC交AC邊于E,兩線相交于F點.
(1)若∠BAC=60°,∠C=70°,求∠AFB的大;
(2)若D是BC的中點,∠ABE=30°,求證:△ABC是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育運動學(xué)校準(zhǔn)備在甲、已兩位射箭選手中選出成績比較穩(wěn)定的一人參加集訓(xùn),兩人各射擊了5箭,已知他們的總成績(單位:環(huán))相同,如下表所示:
第1次 | 第2次 | 第3次 | 第4次 | 第5次 | |
甲成績 | 9 | 4 | 7 | 4 | 6 |
乙成績 | 7 | 5 | 7 | a | 7 |
(1)試求出表中a的值;
(2)請你通過計算,從平均數(shù)和方差的角度分析,誰將被選中.
[注:平均數(shù)x=;方差].
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=3x與雙曲線y= (k≠0,且x>0)交于點A,點A的橫坐標(biāo)是1.
(1)求點A的坐標(biāo)及雙曲線的解析式;
(2)點B是雙曲線上一點,且點B的縱坐標(biāo)是1,連接OB,AB,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某辦公樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時,辦公樓在建筑物的墻上留下高3米的影子CE,而當(dāng)光線與地面夾角是45°時,辦公樓頂A在地面上的影子F與墻角C有27米的距離(B,F,C在一條直線上).
(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請你求出A,E之間的距離.
(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點D為直角三角形ABC的斜邊AB上的中點,DE⊥AB交AC于E, 連EB、CD,線段CD與BF交于點F.若tanA=,則=_____.如圖2,點D為直角三角形ABC的斜邊AB上的一點,DE⊥AB交AC于E, 連EB、CD;線段CD與BF交于點F.若,tanA=,則=____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com