【題目】如圖1,點(diǎn)D為直角三角形ABC的斜邊AB上的中點(diǎn),DE⊥AB交AC于E, 連EB、CD,線段CD與BF交于點(diǎn)F.若tanA=,則=_____.如圖2,點(diǎn)D為直角三角形ABC的斜邊AB上的一點(diǎn),DE⊥AB交AC于E, 連EB、CD;線段CD與BF交于點(diǎn)F.若,tanA=,則=____.
【答案】
【解析】
設(shè)AC=8a,∵DE⊥AB,tanA═,
∴DE=AD,
∵Rt△ABC中,AC═a,,tanA═,
∴BC=,AB== ,
又∵△AED沿DE翻折,A恰好與B重合,
∴AD=BD= ,DE= ,
∴Rt△ADE中,AE== ,
∴CE=8a-5a=3a,
∴Rt△BCE中,BE==5a,
如圖,過點(diǎn)C作CG⊥BE于G,作DH⊥BE于H,則
Rt△BDE中,DH==2a,
Rt△BCE中,CG== ,
∵CG∥DH,
∴△CFG∽△DFH,
∴,
故答案為:6:5.
(2)若,tanA=,
∴AD= , BD= ,DE= ,
∴Rt△ADE中,AE== ,
∴CE=8a- = ,
∴Rt△BCE中,BE== ,
如圖,過點(diǎn)C作CG⊥BE于G,作DH⊥BE于H,則
Rt△BDE中,DH== ,
Rt△BCE中,CG== ,
∵CG∥DH,
∴△CFG∽△DFH,
∴,
故答案為:44:15.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABN和△ACM位置如圖所示,AB=AC,AD=AE,∠1=∠2.
(1)求證:BD=CE;
(2)求證:∠M=∠N.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A(﹣3,0),點(diǎn)B是x軸上異于點(diǎn)A一動(dòng)點(diǎn),設(shè)B(x,0),以AB為邊在x軸的上方作正方形ABCD.
(1)如圖(1),若點(diǎn)B(1,0),則點(diǎn)D的坐標(biāo)為 ;
(2)若點(diǎn)E是AB的中點(diǎn),∠DEF=90°,且EF交正方形外角的平分線BF于F.
①如圖(2),當(dāng)x>0時(shí),求證:DE=EF;
②若點(diǎn)F的縱坐標(biāo)為y,求y關(guān)于x的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC是等邊三角形,點(diǎn)A與點(diǎn)D的坐標(biāo)分別是A(4,0),D(10,0).
(1)如圖①,當(dāng)點(diǎn)C與點(diǎn)O重合時(shí),求直線BD的表達(dá)式;
(2)如圖②,點(diǎn)C從點(diǎn)O沿y軸向下移動(dòng),當(dāng)以點(diǎn)B為圓心,AB為半徑的☉B與y軸相切(切點(diǎn)為C)時(shí),求點(diǎn)B的坐標(biāo);
(3)如圖③,點(diǎn)C從點(diǎn)O沿y軸向下移動(dòng),當(dāng)點(diǎn)C的坐標(biāo)為C(0,-2)時(shí),求∠ODB的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是⊙O的直徑,AB=10, ,點(diǎn)E是點(diǎn)D關(guān)于AB的對稱點(diǎn),M是AB上的一動(dòng)點(diǎn),下列結(jié)論:①∠BOE=60°;②∠CED=∠AOD;③DM⊥CE;④CM+DM的最小值是10,其中正確的序號是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線試紙y=ax2+bx+c與x軸交于點(diǎn)A,C,與y軸交于點(diǎn)B.已知點(diǎn)A坐標(biāo)為(8,0),點(diǎn)B為(0,8),點(diǎn)D為(0,3),tan∠DCO=,直線AB和直線CD相交于點(diǎn)E.
⑴ 求拋物線的解析式,并化成y=a(x-m)2+h的形式;
⑵ 設(shè)拋物線的頂點(diǎn)為G,請?jiān)谥本AB上方的拋物線上求點(diǎn)P的坐標(biāo),使得S△ABP=S△ABG.
⑶ 點(diǎn)M為直線AB上的一點(diǎn),過點(diǎn)M作x軸的平行線分別交直線AB,CD于點(diǎn)M,N,連結(jié)DM,DN,是否存在點(diǎn)M,使得△DMN為等腰三角形?若存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC邊上一點(diǎn),且DA=DB,O是AB的中點(diǎn),CE是△BCD的中線.
(1)如圖a,連接OC,請直接寫出∠OCE和∠OAC的數(shù)量關(guān)系: ;
(2)點(diǎn)M是射線EC上的一個(gè)動(dòng)點(diǎn),將射線OM繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得射線ON,使∠MON=∠ADB,ON與射線CA交于點(diǎn)N.
①如圖b,猜想并證明線段OM和線段ON之間的數(shù)量關(guān)系;
②若∠BAC=30°,BC=m,當(dāng)∠AON=15°時(shí),請直接寫出線段ME的長度(用含m的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公園的門票每張20元,一次性使用.考慮到人們的不同需求,也為了吸引更多的游客,該公園除保留原來的售票方法外,還推出了一種“購買個(gè)人年票”(個(gè)人年票從購買日起,可供持票者使用一年)的售票方法.年票分A,B,C三類,A類年票每張240元,持票進(jìn)入該園區(qū)時(shí),無需再購買門票;B類年票每張120元,持票者進(jìn)入該園區(qū)時(shí),需再購買門票,每次4元;C類年票每張80元,持票者進(jìn)入該園區(qū)時(shí),需再購買門票,每次6元.
(1)如果只能選擇一種購買年票的方式,并且計(jì)劃在一年中花費(fèi)160元在該公園的門票上,通過計(jì)算,找出可進(jìn)入該園區(qū)次數(shù)最多的方式.
(2)一年中進(jìn)入該公園超過多少次時(shí),A類年票比較合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點(diǎn)E,∠ABC的平分線交AD于點(diǎn)F,若BF=12,AB=10,則AE的長為( )
A. 13B. 14C. 15D. 16
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com