請你寫出一個(gè)拋物線的表達(dá)式,此拋物線滿足對稱軸是軸,且在軸的左側(cè)部分是上升的,那么這個(gè)拋物線表達(dá)式可以是                      

試題分析:根據(jù)對稱軸是軸可得,再由在軸的左側(cè)部分是上升的可判斷.
答案不唯一,如.
點(diǎn)評:解題的關(guān)鍵熟練掌握當(dāng)拋物線的對稱軸是軸時(shí),一次項(xiàng)系數(shù)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線l:交y軸于點(diǎn)A.拋物線的圖象過點(diǎn)E(-1,0),并與直線l相交于A、B兩點(diǎn).

⑴ 求拋物線的解析式;
⑵ 設(shè)點(diǎn)P是拋物線的對稱軸上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAE的周長最小時(shí),求點(diǎn)P的坐標(biāo);
⑶ 在x軸上是否存在點(diǎn)M,使得△MAB是直角三角形?若存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

把二次函數(shù)配方成頂點(diǎn)式為(     )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=2x-2與x軸交于點(diǎn)A,拋物線y=ax2+bx+c的對稱軸是直線x=3,拋物線經(jīng)過點(diǎn)A,且頂點(diǎn)P在直線y=2x-2上.

(1)求A、P兩點(diǎn)的坐標(biāo)及拋物線y=ax2+bx+c的解析式;
(2)畫出拋物線的草圖,并觀察圖象寫出不等式ax2+bx+c>0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將拋物線先向左平移2個(gè)單位,再向上平移3個(gè)單位后得到新的拋物線,則新拋物線的解析式是
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)是二次函數(shù),那么a=__________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖是二次函數(shù)的部分圖象,由圖象可知方程的解是________ ,___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商場購進(jìn)一批單價(jià)為16元的日用品.若按每件23元的價(jià)格銷售,每月能賣出270件;若按每件28元的價(jià)格銷售,每月能賣出120件;若規(guī)定售價(jià)不得低于23元,假定每月銷售件數(shù)y(件)與價(jià)格x(元/件)之間滿足一次函數(shù).
(1)試求y與x之間的函數(shù)關(guān)系式.
(2)在商品不積壓且不考慮其他因素的條件下,銷售價(jià)格定為多少時(shí),才能使每月的毛利潤w最大?每月的最大毛利潤為多少?
(3)若要使某月的毛利潤為1800元,售價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(6分)(1)如圖:靠著22 m長的房屋后墻,圍一塊150 m2的矩形雞場,現(xiàn)在有籬笆共40 m。求矩形的長、寬各多少米?

(2)若把“圍一塊150 m2的矩形雞場”改為“圍一塊S m2的矩形雞場”,其它條件不變,能否使S最大。若能,請你求出此時(shí)矩形的長、寬及最大面積;若不能,請你說明理由。

查看答案和解析>>

同步練習(xí)冊答案