已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結(jié)論:① a+b+c<0;② a-b+c<0;③ b+2a<0;④ abc>0 .其中所有正確結(jié)論的序號是(   )
A.③④B.②③C.①④D.①②③
B

試題分析:由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.
①當x=1時,y=a+b+c=0,故本選項錯誤;
②當x=-1時,圖象與x軸交點負半軸明顯大于-1,∴y=a-b+c<0,故本選項正確;
③由拋物線的開口向下知a<0,
∵對稱軸為1>x=->0,
∴2a+b<0,
故本選項正確;
④對稱軸為x=->0,
∴a、b異號,即b>0,
∴abc<0,
故本選項錯誤;
∴正確結(jié)論的序號為②③.
故選B.
點評:二次函數(shù)y=ax2+bx+c系數(shù)符號的確定:
(1)a由拋物線開口方向確定:開口方向向上,則a>0;否則a<0;
(2)b由對稱軸和a的符號確定:由對稱軸公式x=-判斷符號;
(3)c由拋物線與y軸的交點確定:交點在y軸正半軸,則c>0;否則c<0;
(4)當x=1時,可以確定y=a+b+C的值;當x=-1時,可以確定y=a-b+c的值.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知二次函數(shù)的圖像經(jīng)過、;

(1)求二次函數(shù)的解析式;
(2)畫出二次函數(shù)的圖像;

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,用長為32米的籬笆圍成一個外形為矩形的花圃,花圃的一邊利用原有墻,中間用2道籬笆割成3個小矩形.已知原有墻的最大可利用長度為15米,花圃的面積為S平方米,平行于原有墻的一邊BC長為x米.

(1)求S關于x的函數(shù)關系式;
(2)當圍成的花圃面積為60平方米時,求AB的長;
(3)能否圍成面積比60平方米更大的花圃?如果能,那么最大的面積是多少?如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

拋物線y=ax2+bx+c的圖角如圖,則下列結(jié)論:①abc>0;②a+b+c=2;③a>;④b<1.其中正確的結(jié)論是(  )
A.①②B.②④C.②③D.③④

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)(a<0)的圖象經(jīng)過點A(-2,0)、O(0,0)、B(-3,y1)、C(3,y2)四點,則y1與y2的大小關系正確的是(    )
A.y1<y2B.y1>y2C.y1=y(tǒng)2D.不能確定

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若拋物線經(jīng)過坐標原點,則這個拋物線的頂點坐標是        

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知二次函數(shù)的圖象如圖所示,則a___0,b___0,c___0,____0;

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)的圖象如圖所示.當<0時,自變量的取值范圍是(    
A.-1<<3B.<-1
C.>3D.<-1或>3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商場購進一批單價為5元的日用商品.如果以單價7元銷售,每天可售出160件.根據(jù)銷售經(jīng)驗,提高銷售單價會導致銷售量的減少,即銷售單價每提高1元,銷售量每天就相應減少20件。設這種商品的銷售單價為x元,商品每天銷售這種商品所獲得的利潤為y元.
(1)給定x的一些值,請計算y的一些值.(每空1分,共4分)
x

7
8
9
10
11

y

320
 
 
 
 

(2)求y與x之間的函數(shù)關系式及自變量x的取值范圍;(4分)
(3)請?zhí)剿鳎寒斏唐返匿N售單價定為多少元時,該商店銷售這種商品獲得的利潤最大?這時每天銷售的商品是多少件?(4分)
x

7
8
9
10
11

y

320
420
480
500
480

查看答案和解析>>

同步練習冊答案