如圖,AB是⊙O的直徑,點C在⊙O上,∠CAB的平分線交⊙O于點D,過點D作AC的垂線交AC的延長線于點E,連接BC交AD于點F.
(1)猜想ED與⊙O的位置關系,并證明你的猜想;
(2)若AB=6,AD=5,求AF的長.
(1)ED與⊙O的位置關系是相切.理由如下:
連接OD,
∵∠CAB的平分線交⊙O于點D,
CD
=
BD
,
∴OD⊥BC,
∵AB是⊙O的直徑,
∴∠ACB=90°,
即BC⊥AC,
∵DE⊥AC,
∴DEBC,
∴OD⊥DE,
∴ED與⊙O的位置關系是相切;

(2)連接BD.
∵AB是直徑,
∴∠ADB=90°,
在直角△ABD中,BD=
AB2-AD2
=
36-25
=
11

∵AB為直徑,
∴∠ACB=∠ADB=90°,
又∵∠AFC=∠BFD,
∴∠FBD=∠CAD=∠BAD
∴△FBD△BAD,
FD
BD
=
BD
AD

∴FD=
11
5

∴AF=AD-FD=5-
11
5
=
14
5

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知AB是半圓O的直徑,D是AB延長線上的一點,AE⊥DC,交DC的延長線于點E,交半圓O于點F,且C為
BF
的中點.
(1)求證:DE是半圓O的切線;
(2)若∠D=30°,求證:∠CAE=∠BCD.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知⊙O中OA、OB是兩條互相垂直的半徑,P為OA延長線上任一點,BP與⊙O相交于Q,過Q作⊙O的切線QR與OP相交于R.
求證:RP=RQ.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,O是△ABC的外心.∠CAE=∠B.
(1)求證:AE是⊙0的切線.
(2)當點B繞著點0順時針旋轉.使外心O恰好在BC邊上或在△ABC內時,(1)中的結論是否仍然成立?請畫圖并證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖中,PA,PB是⊙O的切線,點A,B為切點,AC是⊙O的直徑,∠ACB=50°,求∠P的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,PT是⊙O的切線,T為切點,PBA是割線,交⊙O于A、B兩點,與直徑CT交于點D,已知CD=2,AD=3,BD=4,那么PB等于( 。
A.6B.6
15
C.7D.20

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,⊙O的直徑BC=4,過點C作⊙O的切線m,D是直線m上一點,且DC=2,A是線段BO上一動點,連接AD交⊙O于G,過點A作AD的垂線交直線m于點F,交⊙O于點H,連接GH交BC于E.
(1)當點A是BO的中點時,求AF的長;
(2)若∠AGH=∠AFD,求△AGH的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,延長弦BD到點C,使DC=BD,連接AC,過點D作DE⊥AC,垂足為E.
(1)判斷直線DE與⊙O的位置關系,并證明你的結論;
(2)若⊙O的半徑為6,∠BAC=60°,延長ED交AB延長線于點F,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,Rt△ABC中,∠C=90°,CD=6,以CD為直徑的⊙O切AB于G,設AG2=y,AC=x.
(1)求y與x的函數(shù)關系式,并指出自變量的取值范圍.
(2)利用所求出的函數(shù)關系式,求當AC為何值時,才能使得BC與⊙O的直徑相等?
(3)△ACB有可能為等腰三角形嗎?若可能,請求出x的值;若不可能,請說出理由.

查看答案和解析>>

同步練習冊答案