【題目】把下列各數填入表示它所在的集合里.
﹣2,7,﹣1.732,0,3.14,﹣(+5),﹣ ,﹣(﹣3),2007
(1)正數集合{ …}
(2)負數集合{ …}
(3)整數集合{ …}
(4)有理數集合{ …}.
【答案】
(1)
解:正數集合{7,3.14,﹣(﹣3),2007}
(2)
解:負數集合{﹣2,﹣1.732,﹣(+5),﹣ }
(3)
解:整數集合{﹣2,7,0,﹣(+5),﹣(﹣3),2007}
(4)
解:有理數集合{﹣2,7,﹣1.732,0,3.14,﹣(+5),﹣ ,﹣(﹣3),2007}
【解析】按照有理數的分類填寫:
有理數 .
【考點精析】解答此題的關鍵在于理解有理數的意義的相關知識,掌握正整數、0、負整數統(tǒng)稱整數;正分數、負分數統(tǒng)稱分數;整數和分數統(tǒng)稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數.
科目:初中數學 來源: 題型:
【題目】快、慢兩車分別從相距180千米的甲、乙兩地同時出發(fā),沿同一路線勻速行駛,相向而行,快車到達乙地停留一段時間后,按原路原速返回甲地.慢車到達甲地比快車到達甲地早小時,慢車速度是快車速度的一半,快、慢兩車到達甲地后停止行駛,兩車距各自出發(fā)地的路程y(千米)與所用時間x(小時)的函數圖象如圖所示,請結合圖象信息解答下列問題:
(1)請直接寫出快、慢兩車的速度;
(2)求快車返回過程中y(千米)與x(小時)的函數關系式;
(3)兩車出發(fā)后經過多長時間相距90千米的路程?直接寫出答案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】老師在計算學期平均分的時候按照如下標準,作業(yè)占10%,測驗占20%,期中考試占30%,期末考試占40%,小麗的成績如表所示,則小麗的平均分是________分.
學生 | 作業(yè) | 測驗 | 期中考試 | 期未考試 |
小麗 | 80 | 75 | 70 | 90 |
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,O為坐標原點,四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB=,反比例函數在第一象限內的圖象經過點A,與BC交于點F,則△AOF的面積等于( )
A.60 B.80 C.30 D.40
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法不正確的是( )
A. 選舉中,人們通常最關心的數據是眾數
B. 數據6、4、2、2、1的平均數是3
C. 數據3、5、4、1、-2的中位數是3
D. “打開電視機,中央一套正在播廣告”是必然事件
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在面積為12的平行四邊形ABCD中,過點A作直線BC的垂線交直線BC于點E,過點A作直線CD的垂線交直線CD于點F,若AB=4,BC=6,則CE+CF的值為.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,⊙O的半徑為r(r>0),若點P′在射線OP上,滿足OP′OP=,則稱點P′是點P關于⊙O的“反演點”.
如圖2,⊙O的半徑為4,點B在⊙O上,∠BOA=60°,OA=8,若點A′,B′分別是點A,B關于⊙O的反演點,求A′B′的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請閱讀下列材料,并完成相應的任務:
阿基米德折弦定理
阿基米德(archimedes,公元前287﹣公元前212年,古希臘)是有史以來最偉大的數學家之一,他與牛頓、高斯并成為三大數學王子.
阿拉伯Al﹣Binmi(973﹣1050年)的譯文中保存了阿基米德折弦定理的內容,蘇聯在1964年根據Al﹣Binmi譯本出版了俄文版《阿基米德全集》,第一題就是阿基米德折弦定理.
阿基米德折弦定理:如圖1,AB和BC是⊙O的兩條弦(即折線ABC是圓的一條折弦),BC>AB,M是的中點,則從M向BC所作垂線的垂足D是折弦ABC的中點,即CD=AB+BD.下面是運用“截長法”證明CD=AB+BD的部分證明過程.證明:如圖2,在CB上截取CG=AB,連接MA,MB,MC和MG.
∵M是的中點,∴MA=MC.
…
任務:
(1)請按照上面的證明思路,寫出該證明的剩余部分;
(2)填空:如圖3,已知等邊△ABC內接于⊙O,AB=2,D為上一點,∠ABD=45°,AE⊥BD于點E,則△BDC的周長是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com