分析 先根據(jù)等角對等邊,得出DE=BE,再設(shè)DE=BE=x,在直角三角形ABE中,根據(jù)勾股定理列出關(guān)于x的方程,求得x的值即可.
解答 解:由折疊得,∠CBD=∠EBD,
由AD∥BC得,∠CBD=∠EDB,
∴∠EBD=∠EDB,
∴DE=BE,
設(shè)DE=BE=x,則AE=4-x,
在直角三角形ABE中,AE2+AB2=BE2,即(4-x)2+32=x2,
解得x=$\frac{25}{8}$,
∴DE的長為$\frac{25}{8}$.
故答案為:$\frac{25}{8}$
點評 本題以折疊問題為背景,主要考查了軸對稱的性質(zhì)以及勾股定理.折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的對應(yīng)邊和對應(yīng)角相等.解題時,我們常設(shè)所求的線段長為x,然后用含x的代數(shù)式表示其他線段的長度,選擇適當(dāng)?shù)闹苯侨切危\用勾股定理列出方程求解.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2\sqrt{a}}{a}$ | B. | 2$\sqrt{a}$ | C. | 4$\sqrt{a}$ | D. | 2a |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 8 | D. | 不能確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 16 | C. | 18 | D. | 20 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com