【題目】關(guān)于二次函數(shù)的三個結(jié)論:對任意實數(shù)m,都有對應(yīng)的函數(shù)值相等;3x4,對應(yīng)的y的整數(shù)值有4個,則;若拋物線與x軸交于不同兩點AB,且AB6,則.其中正確的結(jié)論是(

A.①②B.①③C.②③D.①②③

【答案】D

【解析】

由題意可求次函數(shù)y=ax2-4ax-5的對稱軸為直線,由對稱性可判斷①;分a0a0兩種情況討論,由題意列出不等式,可求解,可判斷②;分a0a0兩種情況討論,由題意列出不等式組,可求解,可判斷③;即可求解.

解:∵拋物線的對稱軸為,

∴x1=2+mx2=2-m關(guān)于直線x=2對稱,
對任意實數(shù)m,都有x1=2+mx2=2-m對應(yīng)的函數(shù)值相等;
正確;

當(dāng)x=3時,y=-3a-5,當(dāng)x=4時,y=-5,
a0時,當(dāng)3≤x≤4時,-3a-5y≤-5,
∵當(dāng)3≤x≤4時,對應(yīng)的y的整數(shù)值有4個,
,
a0時,當(dāng)3≤x≤4時,-5≤y-3a-5
∵當(dāng)3≤x≤4時,對應(yīng)的y的整數(shù)值有4個,
,
故②正確;
a0,拋物線與x軸交于不同兩點A,B,且AB≤6,
∴△>0,25a-20a-5≥0,

;

a0,拋物線與x軸交于不同兩點A,B,且AB≤6,
∴△>0,25a-20a-5≤0,

a
綜上所述:當(dāng)aa≥1時,拋物線與x軸交于不同兩點A,B,且AB≤6

故③正確;
故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是一個銳角,以點為圓心,任意長為半徑畫弧,分別交、于點、,再分別以點、為圓心,大于長為半徑畫弧,兩弧交于點,畫射線.過點,交射線于點,過點,交于點.設(shè),則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,二次函數(shù)的圖象與x軸交于A(-2,0),B(4,0)兩點,且函數(shù)的最大值為9.

(1)求二次函數(shù)的解析式;

(2)設(shè)此二次函數(shù)圖象的頂點為C,與y軸交點為D,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A,B兩點,若點P是第一象限內(nèi)反比例函數(shù)圖象上一點,且的面積是的面積的2倍,則點P橫坐標(biāo)________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)接到加工糧食任務(wù),要求天加工完噸糧食.該企業(yè)安排甲、乙兩車間共同完成加工任務(wù).乙車間因維修設(shè)備,中途停工一段時間,維修設(shè)備后提高了加工效率,繼續(xù)加工,直到與甲車間同時完成加工任務(wù)為止.設(shè)甲、乙兩車間各自加工糧食數(shù)量()與甲車間加工時間()之間的函數(shù)關(guān)系如圖①所示;未加工糧食()與甲車間加工時間()之間的函數(shù)關(guān)系如圖②所示、請結(jié)合圖象解答下列問題:

1)甲車間每天加工糧食 噸, ;

2)求乙車間維修設(shè)備后,乙車間加工糧食數(shù)量之間的函數(shù)關(guān)系式;

3)求加工噸糧食需要幾天完成.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)圖象過點A-2,0),B40),C0,4

1)求二次函數(shù)的解析式;

2)如圖,當(dāng)點PAC的中點時,在線段PB上是否存在點M,使得∠BMC=90°?若存在,求出點M的坐標(biāo),若不存在,請說明理由.

3)點K在拋物線上,點DAB的中點,直線KD與直線BC的夾角為銳角,且tan=,求點K的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新冠疫情期間,全國人民眾志成城,同心抗疫,某商家決定將一個月獲得的利潤全部捐贈給社區(qū)用于抗疫.已知商家購進(jìn)一批產(chǎn)品,成本為10/件,擬采取線上和線下兩種方式進(jìn)行銷售.調(diào)查發(fā)現(xiàn),線下的月銷量(單位:件)與線下售價(單位:元/件,)滿足一次函數(shù)的關(guān)系,部分?jǐn)?shù)據(jù)如下表:

1)求的函數(shù)關(guān)系式;

2)若線上售價始終比線下每件便宜2元,且線上的月銷量固定為400件.試問:當(dāng)為多少時,線上和線下月利潤總和達(dá)到最大?并求出此時的最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,點EF、GH分別是邊AB、BC、CDDA的中點,連接EF、FGGHHE.若EH=2EF,則下列結(jié)論正確的是

A. ABEF B. AB=2EF C. ABEF D. ABEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過,三點.

1)求該拋物線的解析式;

2)經(jīng)過點B的直線交y軸于點D,交線段于點E,若

①求直線的解析式;

②已知點Q在該拋物線的對稱軸l上,且縱坐標(biāo)為1,點P是該拋物線上位于第一象限的動點,且在l右側(cè).點R是直線上的動點,若是以點Q為直角頂點的等腰直角三角形,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案