【題目】將一副三角板的直角重合放置,如圖1所示,
(1)圖1中∠BEC的度數(shù)為_________
(2)三角板△AOB的位置保持不動,將三角板△COD繞其直角頂點(diǎn)O順時針方向旋轉(zhuǎn):
①當(dāng)旋轉(zhuǎn)至圖2所示位置時,恰好OD∥AB,求此時∠AOC的大;
②若將三角板△COD繼續(xù)繞O旋轉(zhuǎn),直至回到圖1位置,在這一過程中,是否會存在△COD其中一邊能與AB平行?如果存在,請你畫出圖形,并直接寫出相應(yīng)的∠AOC的大小;如果不存在,請說明理由.
【答案】(1)165°(2)①30°②120°存在
【解析】
試題分析:(1)由已知可求出∠CAE=180°﹣60°=120°,再根據(jù)三角形外角性質(zhì)求出∠BEC的度數(shù).
(2)①由OD∥AB可得∠BOD=∠B=30°,再由∠BOD+∠BOC=90°和∠AOC+∠BOC=90°求出∠AOC.
②將三角板△COD繼續(xù)繞O旋轉(zhuǎn),OC邊能與AB平行,由平行可得∠COB=∠B=30°,從而求出∠AOC.
解:(1)∠CAE=180°﹣∠BAO=180°﹣60°=120°,
∴∠BEC=∠C+∠CAE=45°+120°=165°,
故答案為:165°.
(2)①∵OD∥AB,
∴∠BOD=∠B=30°,
又∠BOD+∠BOC=90°,∠AOC+∠BOC=90°,
∴∠AOC=∠BOD=30°.
②存在,如圖1,∠AOC=120°;
如圖2,∠AOC=165°;
如圖3,∠AOC=30°;
如圖4,∠AOC=150°;
如圖5,∠AOC=60°;
如圖6,∠AOC=15°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長為6,AD是BC邊上的中線,M是AD上的動點(diǎn),E是AC邊上一點(diǎn),若AE=2,EM+CM的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AD是△ABC外角的平分線,已知∠BAC=∠ACD.
(1)求證:△ABC≌△CDA;
(2)若∠B=60°,求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線a、b被直線c所截,現(xiàn)給出下列四種條件:①∠2=∠6;②∠2=∠8;③∠1+∠4=180°;④∠3=∠8,其中能判斷是a∥b的條件的序號是( )
A.①② B.①③ C.①④ D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國倡導(dǎo)的“一帶一路”建設(shè)將促進(jìn)我國與世界各國的互利合作,根據(jù)規(guī)劃,“一帶一路”地區(qū)覆蓋總?cè)丝诩s4 400 000 000人,這個數(shù)用科學(xué)記數(shù)法表示為( )
A. 44×108 B. 4.4×109 C. 4.4×108 D. 4.4×1010
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝公司招工廣告承諾:熟練工人每月工資至少3000元.每天工作8小時,一個月工作25天.月工資底薪800元,另加計件工資.加工1件A型服裝計酬16元,加工1件B型服裝計酬12元.在工作中發(fā)現(xiàn)一名熟練工加工1件A型服裝和2件B型服裝需4小時,加工3件A型服裝和1件B型服裝需7小時.(工人月工資=底薪+計件工資)
(1)一名熟練工加工1件A型服裝和1件B型服裝各需要多少小時?
(2)一段時間后,公司規(guī)定:“每名工人每月必須加工A,B兩種型號的服裝,且加工A型服裝數(shù)量不少于B型服裝的一半”.設(shè)一名熟練工人每月加工A型服裝a件,工資總額為W元.請你運(yùn)用所學(xué)知識判斷該公司在執(zhí)行規(guī)定后是否違背了廣告承諾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=kx﹣1(常數(shù)k<0)的圖象一定不經(jīng)過的象限是( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com