【題目】如圖,直線AB過x軸上的點A(2,0),且與拋物線y=ax2相交于B、C兩點,B點坐標為(1,1).
(1)求直線AB和拋物線的函數(shù)關(guān)系式;
(2)在拋物線上是否存在一點D,使得S△OAD=S△OBC?若不存在,請說明理由;若存在,請求出點D的坐標.
【答案】(1)a=1,y=x2;(2)點D坐標為或
【解析】
(1)已知直線AB經(jīng)過A(2,0),B(1,1),設(shè)直線表達式為y=ax+b,可求直線解析式;將B(1,1)代入拋物線y=ax2可求拋物線解析式;
(2)已知A,B,C三點坐標,根據(jù)作差法可求△OBC的面積,在△DOA中,已知面積和底OA,可求OA上的高,即D點縱坐標,代入拋物線解析式求橫坐標,得出D點坐標.
解:(1)設(shè)直線AB關(guān)系式為y=kx+b∵A(2,0),B(1,1)都在直線y=kx+b的圖象上,
∴
解得,
∴直線AB關(guān)系式為y=﹣x+2,
∵點B(1,1)在y=ax2的圖象上,
∴a=1,其關(guān)系式為y=x2;
(2)如圖,存在點D,設(shè)D(x,x2),
∴
由題意得,
解得或,
∴C(﹣2,4),
∴,
∵S△BOC=S△OAD,
∴x2=3,
解得,
∴點D坐標為或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點P,OF∥BC交AC于AC點E,交PC于點F,連接AF.
(1)判斷AF與⊙O的位置關(guān)系并說明理由;
(2)若⊙O的半徑為4,AF=3,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD中,E,F分別是AB,AD邊上的點,DE與CF交于點G.
(1)如圖①,若四邊形ABCD是矩形,且DE⊥CF,求證: ;
(2)如圖②,若四邊形ABCD是平行四邊形,試探究:當∠B與∠EGC滿足什么關(guān)系時,使得成立?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將邊長為的正方形ABCD繞點A逆時針方向旋轉(zhuǎn)30°后得到正方形AB′C′D′.
(1)求證:ED=EB′;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連結(jié)BD、DP,BD與CF相交于點H.給出下列結(jié)論,其中正確結(jié)論的個數(shù)是( )
①△BDE∽△DPE;②;③;④tan∠DBE=.
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為直線x=1.分析下列5個結(jié)論:①2c<3b;②若0<x<3,則ax2+bx+c>0;③;④(k為實數(shù));⑤(m為實數(shù)).其中正確的結(jié)論個數(shù)有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于點,對稱軸為直線,,下列結(jié)論:①;②9a+3b+c=0;③若點,點是此函數(shù)圖象上的兩點,則;④.其中正確的個數(shù)( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的袋子里有1個紅球,1個黃球和n個白球,它們除顏色外其余都相同.
(1)從這個袋子里摸出一個球,記錄其顏色,然后放回,搖均勻后,重復該實驗,經(jīng)過大量實驗后,發(fā)現(xiàn)摸到白球的頻率穩(wěn)定于0.5左右,求n的值;
(2)在(1)的條件下,先從這個袋中摸出一個球,記錄其顏色,放回,搖均勻后,再從袋中摸出一個球,記錄其顏色.請用畫樹狀圖或者列表的方法,求出先后兩次摸出不同顏色的兩個球的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com