【題目】每個(gè)小方格是邊長為1個(gè)單位長度的小正方形,菱形OABC在平面直角坐標(biāo)系的位置如圖所示.

(1)以O(shè)為位似中心,在第一象限內(nèi)將菱形OABC放大為原來的2倍得到菱形OA1B1C1 , 請畫出菱形OA1B1C1 , 并直接寫出點(diǎn)B1的坐標(biāo);
(2)將菱形OABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°菱形OA2B2C2 , 請畫出菱形OA2B2C2 , 并求出點(diǎn)B旋轉(zhuǎn)到點(diǎn)B2的路徑長.

【答案】
(1)解:如圖所示:

由點(diǎn)B1在坐標(biāo)系中的位置可知,B1(8,8)


(2)解:如圖所示:

∵OB= = =4 ,

∴BB2的弧長= =2 π.

答:點(diǎn)B旋轉(zhuǎn)到點(diǎn)B2的路徑長為2 π


【解析】(1)抓住關(guān)鍵的已知條件以O(shè)為位似中心,在第一象限內(nèi)將菱形OABC放大為原來的2倍,就是將菱形OABC的邊長均擴(kuò)大原來的兩倍即可;(2)抓住是將菱形OABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,注意旋轉(zhuǎn)的方向和旋轉(zhuǎn)的角度,根據(jù)圖形的旋轉(zhuǎn)性質(zhì)可以畫出旋轉(zhuǎn)后的菱形。點(diǎn)B是繞著點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到點(diǎn)B2,要求B旋轉(zhuǎn)到點(diǎn)B2的路徑長就是弧BB2的長。由弧長公式可以求得結(jié)論。
【考點(diǎn)精析】通過靈活運(yùn)用勾股定理的概念和弧長計(jì)算公式,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;若設(shè)⊙O半徑為R,n°的圓心角所對的弧長為l,則l=nπr/180;注意:在應(yīng)用弧長公式進(jìn)行計(jì)算時(shí),要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,M為對角線BD(不含B點(diǎn))上任意一點(diǎn),將BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接EN、AM、CMAM+BM+CM的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①是一個(gè)長為2m、寬為2n的長方形,沿圖中虛線用剪刀分成四塊小長方形,然后按圖②的形狀拼成一個(gè)正方形.

(1)請和兩種不同的方法求圖②中陰影部分的面積.

方法1__方法2___

(2)觀察圖②請你寫出下列三個(gè)代數(shù)式;mn之間的等量關(guān)系;

(3)根據(jù)(2)題中的等量關(guān)系,解決如下問題:

①已知:的值.

②已知:,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADBC,若∠ADP=∠α,∠BCP=∠β,射線OM上有一動(dòng)點(diǎn)P

1)當(dāng)點(diǎn)PAB兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠CPD與∠α、∠β之間有何數(shù)量關(guān)系?請說明理由

2)如果點(diǎn)PA、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請你直接寫出∠CPD與∠α、∠β之間的何數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知第三象限的點(diǎn)Pxy)滿足,

1)求點(diǎn)P的坐標(biāo);

2)①點(diǎn)Px軸的距離為_______;

②把點(diǎn)P向右平移m個(gè)單位后得到P1,則點(diǎn)P1x軸的距離為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(,0),(30).現(xiàn)將線段AB向上平移2個(gè)單位,再向右平移1個(gè)單位,得到線段AB的對應(yīng)線段CD,連接AC,BD

1)點(diǎn)CD的坐標(biāo)分別為_______, ________,并求出四邊形ABDC的面積S四邊形ABDC;

2)在y軸上存在一點(diǎn)P,連接PAPB,且SPAB =S四邊形ABDC,求出滿足條件的所有點(diǎn)P的坐標(biāo).

3)若點(diǎn)Q為線段BD上一點(diǎn)(不與B,D兩點(diǎn)重合),則的值______(填“變”或“不變”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校有一塊長為(3ab)m,寬為(2ab)m的長方形空地,中間是邊長(ab)m的正方形草坪,其余為活動(dòng)場地,學(xué)校計(jì)劃將活動(dòng)場地(陰影部分)進(jìn)行硬化.

(1)用含a,b的代數(shù)式表示需要硬化的面積并化簡;

(2)當(dāng)a5,b2時(shí),求需要硬化的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:E是∠AOB的平分線上一點(diǎn),ECOA EDOB ,垂足分別為C、D求證:(1OED≌△OEC 2)∠ECD=EDC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠B=45°,cosA= ,則∠C的度數(shù)是

查看答案和解析>>

同步練習(xí)冊答案