【題目】下列說法中,正確的是(

A. 希望小學初一年級的名同學中,至少有兩個生日相同的概率是

B. 在投擲骰子時,連投兩次點數(shù)相同的概率與連投兩次點數(shù)都為的概率相等

C. 我們小組共名同學,他們中肯定有兩人在同一月過生日

D. 一個游戲的中獎率是,買張獎券,一定會中獎

【答案】A

【解析】

概率值只是反映了事件發(fā)生的機會的大小,不是會一定發(fā)生.不確定事件就是隨機事件,即可能發(fā)生也可能不發(fā)生的事件,發(fā)生的概率大于0并且小于1.

A. 希望小學初一年級的367名同學中,至少有兩個生日相同,故A正確;

B. 在投擲骰子時,連投兩次點數(shù)相同的概率是,連投兩次點數(shù)都為1的概率是,故B錯誤;

C.,故C錯誤;

D. 一個游戲的中獎率是1%,只能說買100張獎券,有1%的中獎機會,故D錯誤.

故選:A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一輛慢車從甲地勻速行駛至乙地,一輛快車同時從乙地出發(fā)勻速行駛至甲地,兩車之間的距離y(千米)與行駛時間x(小時)的對應關系如圖所示:

(1)甲乙兩地相距   千米,慢車速度為   千米/小時.

(2)求快車速度是多少?

(3)求從兩車相遇到快車到達甲地時yx之間的函數(shù)關系式.

(4)直接寫出兩車相距300千米時的x值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在“文化宜昌全民閱讀”活動中,某中學社團“精一讀書社”對全校學生的人數(shù)及紙質圖書閱讀量(單位:本)進行了調(diào)查,2012年全校有1000名學生,2013年全校學生人數(shù)比2012年增加10%,2014年全校學生人數(shù)比2013年增加100人.

(1)求2014年全校學生人數(shù);

(2)2013年全校學生人均閱讀量比2012年多1本,閱讀總量比2012年增加1700本(注:閱讀總量=人均閱讀量×人數(shù))

求2012年全校學生人均閱讀量;

2012年讀書社人均閱讀量是全校學生人均閱讀量的2.5倍,如果2012年、2014年這兩年讀書社人均閱讀量都比前一年增長一個相同的百分數(shù)a,2014年全校學生人均閱讀量比2012年增加的百分數(shù)也是a,那么2014年讀書社全部80名成員的閱讀總量將達到全校學生閱讀總量的25%,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,BCAB,連結OC,弦ADOC,直線CDBA的延長線于點E

(1)求證:直線CD是⊙O的切線;

(2)若DE=2BC,AD=5,求OC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線

求拋物線與軸的交點坐標;

求拋物線與軸的兩個交點及兩個交點間的距離.

求拋物線與軸的交點及與軸交點所圍成的三角形面積.

把拋物線改為頂點式,說明頂點和對稱軸.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠要把一批產(chǎn)品從A地運往B地,若通過鐵路運輸,則每千米需交運費15元,還要交裝卸費400元及手續(xù)費200元,若通過公路運輸,則每千米需要交運費25元,還需交手續(xù)費100元(由于本廠職工裝卸,不需交裝卸費).設A地到B地的路程為x km,通過鐵路運輸和通過公路運輸需交總運費y1元和y2元,

(1)y1y2關于x的表達式.

(2)若A地到B地的路程為120km,哪種運輸可以節(jié)省總運費?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明為了檢驗兩枚六個面分別刻有點數(shù)1、 2、3、4、5、6的正六面體骰子的質量是否都合格,在相同的條件下,同時拋兩枚骰子20 00 0次,結果發(fā)現(xiàn)兩個朝上面的點數(shù)和是7的次數(shù)為20次.你認為這兩枚骰子質量是否都合格(合格標準為:在相同條件下拋骰子時,骰子各個面朝上的機會相等)?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),在平面直角坐標系中,直線y軸于點A,交x軸于點B,點C坐標為,作點C關于直線AB的對稱點F,連接BFOF,OFAC于點E,交AB于點M

1)求證:

2)如圖(2),連接CFAB于點H,求證:

3)如圖(3),若Gx軸負半軸上一動點,連接MG,過點MGM的垂線交FB的延長線于點D,GB-BD的值是否為定值?若是,求其值;若不是,求其取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四個小球分別從正方形的四個頂點處出發(fā)(小球的大小忽略不計),以同樣的速度分別沿方向滾動,其終點分別是點,順次連接四個小球所在的位置,得到四邊形

1)不論小球滾動多長時間,求證;四邊形總是正方形;

2)這個四邊形在什么時候面積最大?

3)在什么時侯四邊形的面積為正方形面積的一半?請說明理由.

查看答案和解析>>

同步練習冊答案