【題目】已知函數(shù)f(x)=2cos(ωx﹣φ)(ω>0,φ∈[0,π]的部分圖象如圖所示,若A( , ),B( ),則函數(shù)f(x)的單調增區(qū)間為(
A.[﹣ +2kπ, +2kπ](k∈Z)
B.[ +2kπ, +2kπ](k∈Z)
C.[﹣ +kπ, +kπ](k∈Z)
D.[ +kπ, +kπ](k∈Z)

【答案】C
【解析】解:由函數(shù)圖象可知函數(shù)f(x)的周期T= =π, ∴ω=
又f( )=2cos(π﹣φ)=﹣2cosφ= ,
∴cosφ=﹣
∵φ∈[0,π],∴φ=
∴f(x)=2cos(2x﹣ ).
令﹣π+2kπ2x﹣ ≤2kπ,解得﹣ +kπ≤x≤ +kπ,k∈Z.
故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系,曲線C1的極坐標方程為 ,直線l的參數(shù)方程為 (t為參數(shù)),直線l與曲線C1交于A,B兩點. (Ⅰ)求|AB|的長度;
(Ⅱ)若曲線C2的參數(shù)方程為 (α為參數(shù)),P為曲線C2上的任意一點,求△PAB的面積的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,
(1)求證:BC⊥平面ACFE;
(2)點M在線段EF上運動,設平面MAB與平面FCB二面角的平面角為θ(θ≤90°),試求cosθ的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在(0,+∞)上的單調函數(shù),且對任意的x∈(0,+∞),都有f[f(x)﹣log2x]=3,則方程f(x)﹣f′(x)=2的解所在的區(qū)間是(
A.(0,
B.( ,1)
C.(1,2)
D.(2,3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,曲線C由上半橢圓 和部分拋物線 連接而成,C1與C2的公共點為A,B,其中C1的離心率為

(1)求a,b的值;
(2)過點B的直線l與C1 , C2分別交于點P,Q(均異于點A,B),是否存在直線l,使得PQ為直徑的圓恰好過點A,若存在直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某蛋糕店每天制作生日蛋糕若干個,每個生日蛋糕的成本為50元,然后以每個100元的價格出售,如果當天賣不完,剩下的蛋糕作垃圾處理.現(xiàn)需決策此蛋糕店每天應該制作幾個生日蛋糕,為此搜集并整理了100天生日蛋糕的日需求量(單位:個),得到如圖3所示的柱狀圖,以100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率.若蛋糕店一天制作17個生日蛋糕.
(1)求當天的利潤y(單位:元)關于當天需求量n(單位:個,n∈N)的函數(shù)解析式;
(2)求當天的利潤不低于750元的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某調查機構將今年溫州市民最關注的熱點話題分為消費、教育、環(huán)保、反腐及其它共五類.根據(jù)最近一次隨機調查的相關數(shù)據(jù),繪制的統(tǒng)計圖表如下:
根據(jù)以上信息解答下列問題:
(1)本次共調查人 ,請在補全條形統(tǒng)計圖并標出相應數(shù)據(jù) ;
(2)若溫州市約有900萬人口,請你估計最關注教育問題的人數(shù)約為多少萬人?
(3)在這次調查中,某單位共有甲、乙、丙、丁四人最關注教育問題,現(xiàn)準備從這四人中隨機抽取兩人進行座談,求抽取的兩人恰好是甲和乙的概率(列樹狀圖或列表說明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線l1經過原點與A點,其頂點是P(﹣2,3),平行于y軸的直線m與x軸交于點B(b,0),與拋物線l1交于點M.

(1)點A的坐標是;拋物線l1的解析式是
(2)當BM=3時,求b的值;
(3)把拋物線l1繞點(0,1)旋轉180°,得到拋物線l2
①直接寫出當兩條拋物線對應的函數(shù)值y都隨著x的增大而減小時,x的取值范圍;
(4)②直線m與拋物線l2交于點N,設線段MN的長為n,求n與b的關系式,并求出線段MN的最小值與此時b的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:|﹣|﹣(﹣π)0﹣sin30°+(﹣﹣2

查看答案和解析>>

同步練習冊答案