精英家教網(wǎng)如圖,A是半徑為2
2
的⊙O外一點,OA=4,AB是⊙O的切線,點B是切點,弦BC∥OA,則BC的長為( 。
A、
2
B、2
C、2
2
D、4
分析:連接OC,在Rt△OAB中,根據(jù)勾股定理得OA=
42-(2
2
)
2
=2
2
,∠AOB=∠OAB=45°;
在△OCB中,OC=OB=2
2
可知∠2=∠3,利用BC∥OA,Rt△OCB與Rt△BAO中的相等線段和角可判定Rt△OCB≌Rt△BAO,所以可求BC=OA=4.
解答:精英家教網(wǎng)解:如圖:連接OC,在Rt△OAB中
OA=4,OB=2
2

∵AB2=OA2-OB2
即AB=
42-(2
2
)
2
=2
2

∴OB=AB,∠AOB=∠OAB=45°.
在△OCB中,
OC=OB=2
2
,∠2=∠3.
∵BC∥OA,
∴∠3=∠AOB=∠OAB=45°.
∴△OCB是直角三角形.
在Rt△OCB與Rt△BAO中
OC=OB=AB,∠4=∠ABO=90°,
∴Rt△OCB≌Rt△BAO.
∴BC=OA=4.
故選D.
點評:本題考查了圓的切線性質(zhì),及解直角三角形的知識.
運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為1,如果作兩條互相垂直的直徑AB,CD,那么弦AC是⊙O的內(nèi)接正四邊形的一條邊.若以A為圓心,以1為半徑畫弧,弧與⊙O相交于點E,F(xiàn),則弦EC是⊙O的內(nèi)接正十二邊形的一條邊,EC的長為(  )
A、
3
-1
4
B、
6
-
2
4
C、
3
-1
2
D、
6
-
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•張家口一模)已知:如圖1,⊙O與射線MN相切于點M,⊙O的半徑為2,AC是⊙O的直徑,A與M重合,△ABC是⊙O的內(nèi)接三角形,且∠C=30°,
計算:弦AB=
2
2
,
AB
的長度
2
3
π
2
3
π
(結(jié)果保留π)
探究一:如圖2,若⊙O和△ABC沿射線MN方向作無滑動的滾動,
(1)直接寫出:點B第一次在射線MN上時,圓心O所走過的路線的長
2
3
π
2
3
π
點B第二次在射線MN上時,圓心O所走過的路線的長
14
3
π
14
3
π
(結(jié)果保留π)
(2)過點A、C分別作AD⊥MN于D,CE⊥MN于E,連接OD、OE,小明通過作圖猜想:OD與OE相等,你認為小明的猜想正確嗎?請說明你的理由
探究二:
如圖3,將半徑為R、圓心角為50°的扇形紙片AOB,在射線MN的方向作無滑動的滾動至扇形A′O′B′處,則頂點O經(jīng)過的路線總長為
23
18
πR
23
18
πR
(用含R的代數(shù)式表示,結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的半徑為1,點A是半圓上的一個三等分點,點B是
AN
的中點,P是直徑MN上的一個動點,則PA+PB的最小值為
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,MN是半徑為1的⊙O的直徑,點A在⊙O上,∠AMN=30°,B為AN弧的中點,P是直徑MN上一動點,則PA+PB的最小值為
2
2

查看答案和解析>>

同步練習(xí)冊答案