【題目】某批發(fā)市場對外批發(fā)某品脾的玩具,其價格與件數(shù)關(guān)系如圖所示,請你根據(jù)圖象,判斷下列說法中錯誤的是( )

A. 當(dāng)件數(shù)不超過30件時,每件價格為60

B. 當(dāng)件數(shù)在3060之間時,每件價格隨件數(shù)增加而減少

C. 當(dāng)件數(shù)不少于60件時,每件價格都是45

D. 當(dāng)件數(shù)為50件時.每件價格為55

【答案】D

【解析】

根據(jù)函數(shù)圖象和圖象中的數(shù)據(jù)可以判斷各個選項是否正確,從而可以解答本題.

由圖象可得,
A.當(dāng)件數(shù)不超過30件時,每件價格為60元,故選項A正確,

B.當(dāng)件數(shù)在3060之間時,每件價格隨件數(shù)增加而減少,故選項B正確,

C.當(dāng)件數(shù)不少于60件時,每件價格都是45元,故選項C正確,

D.當(dāng)件數(shù)為50件時,每件價格為:60-=50(元),故選項D錯誤,

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線CD經(jīng)過的頂點C,CA=CBEF分別是直線CD上兩點,且

1)若直線CD經(jīng)過的內(nèi)部,且E、F在射線CD上,請解決下面兩個問題:

如圖1,若,則 (填,號);

如圖2,若,若使中的結(jié)論仍然成立,則應(yīng)滿足的關(guān)系是 ;

2)如圖3,若直線CD經(jīng)過的外部,,請?zhí)骄?/span>EF、與BE、AF三條線段的數(shù)量關(guān)系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將直角三角形ABC沿AB方向平移得到三角形DEF,已知AD6EF8,CG3,則陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,D是BA延長線上的一點,點E是AC的中點。

(1)實踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)字母(保留作圖痕跡,不寫作法)。

DAC的平分線AM。連接BE并延長交AM于點F。

(2)猜想與證明:試猜想AF與BC有怎樣的位置關(guān)系和數(shù)量關(guān)系,并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3.點D是BC邊上的一動點(不與點B、C重合),過點D作DE⊥BC交AB于點E,將∠B沿直線DE翻折,點B落在射線BC上的點F處.當(dāng)△AEF為直角三角形時,BD的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC=2 ,AD為BC邊上的高,動點P在AD上,從點A出發(fā),沿A→D方向運動,設(shè)AP=x,△ABP的面積為S1 , 矩形PDFE的面積為S2 , y=S1+S2 , 則y與x的關(guān)系式是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時出發(fā),設(shè)慢車行駛的時間為x h,兩車之間的距離為y km,如圖所示的折線表示y與x之間的函數(shù)關(guān)系.根據(jù)圖象進行以下探究:

(1)甲、乙兩地之間的距離為km;
(2)請解釋圖中點B的實際意義;
(3)求慢車和快車的速度;
(4)求線段BC所表示的y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,BD為對角線,點P從A出發(fā),沿射線AB運動,連接PD,過點D作DE⊥PD,交直線BC于點E.

(1)探究發(fā)現(xiàn):
當(dāng)點P在線段AB上時(如圖1),BP+CE=BD;
(2)數(shù)學(xué)思考:
當(dāng)點P在線段AB的延長線上時(如圖2),猜想線段BP、CE,BD之間滿足的關(guān)系式,并加以證明;
(3)拓展應(yīng)用:
若直線PE分別交線段BD、CD于點M、N,PM= ,EN= ,直接寫出PD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC,D、E分別為AC、AB中點,BD和CE交于點O,BD和CE是一元二次方程x2﹣kx+24=0的兩個不等實根,則△BOE面積的最大值為(
A.
B.2
C.
D.4

查看答案和解析>>

同步練習(xí)冊答案