【題目】“校園安全”越來越受到人們的關注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.根據圖中信息回答下列問題:
(1)接受問卷調查的學生共有______人,條形統(tǒng)計圖中m的值為______;
(2)扇形統(tǒng)計圖中“了解很少”部分所對應扇形的圓心角的度數(shù)為______;
(3)若該中學共有學生1800人,根據上述調查結果,可以估計出該學校學生中對校園安全知識達到“非常了解”和“基本了解”程度的總人數(shù)為______人;
(4)若從對校園安全知識達到“非常了解”程度的2名男生和2名女生中隨機抽取2人參加校園安全知識競賽,請用列表或畫樹狀圖的方法,求恰好抽到1名男生和1名女生的概率.
【答案】(1)60,10;(2)96°;(3)1020;(4)
【解析】
(1)根據基本了解的人數(shù)以及所占的百分比可求得接受調查問卷的人數(shù),進行求得不了解的人數(shù),即可求得m的值;
(2)用360度乘以“了解很少”的比例即可得;
(3)用“非常了解”和“基本了解”的人數(shù)和除以接受問卷的人數(shù),再乘以1800即可求得答案;
(4)畫樹狀圖表示出所有可能的情況數(shù),再找出符合條件的情況數(shù),利用概率公式進行求解即可.
(1)接受問卷調查的學生共有(人),,
故答案為:60,10;
(2)扇形統(tǒng)計圖中“了解很少”部分所對應扇形的圓心角的度數(shù),
故答案為:96°;
(3)該學校學生中對校園安全知識達到“非常了解”和“基本了解”程度的總人數(shù)為:(人),
故答案為:1020;
(4)由題意列樹狀圖:
由樹狀圖可知,所有等可能的結果有12種,恰好抽到1名男生和1名女生的結果有8種,
∴恰好抽到1名男生和1名女生的概率為.
科目:初中數(shù)學 來源: 題型:
【題目】商場某種新商品每件進價是,在試銷期間發(fā)現(xiàn),當每件商品售價為元時,每天可銷售件,當每件商品售價高于元時,每漲價元,日銷售量就減少件.據此規(guī)律,請回答:
(1)當每件商品售價定為元時,每天可銷售多少件商品,商場獲得的日盈利是多少?
(2)在上述條件不變,商品銷售正常的情況下,每件商品的銷售價定為多少元時,商場日盈利可達到元?(提示:盈利售價進價)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知頂點為D的拋物線與x軸交于A(-1,0),C(3,0)兩點,與y軸交于B點.
(1)求該拋物線的解析式及點D坐標;
(2)若點Q是該拋物線的對稱軸上的一個動點,當AQ+QB最小時,直接寫出直線AQ的函數(shù)解析式;
(3)若點P為拋物上的一個動點,且點P在x軸上方,過P作PK垂直x軸于點K,是否存在點P使得A,K,P三點形成的三角形與△DBC相似?如存在,求出點P的坐標,如不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,點M為邊BC上一動點,聯(lián)結AM并延長交射線DC于點F,作∠FAE=45°交射線BC于點E、交邊DCN于點N,聯(lián)結EF.
(1)當CM:CB=1:4時,求CF的長.
(2)設CM=x,CE=y,求y關于x的函數(shù)關系式,并寫出定義域.
(3)當△ABM∽△EFN時,求CM的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB與函數(shù)y=(x>0)的圖象交于點A(m,2),B(2,n).過點A作AC平行于x軸交y軸于點C,在y軸負半軸上取一點D,使OD=OC,且△ACD的面積是6,連接BC.
(1)求m,k,n的值;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調查,并將調查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).
請根據以上信息回答:
(1)本次參加抽樣調查的居民有多少人?
(2)將兩幅不完整的圖補充完整;
(3)若居民區(qū)有8000人,請估計愛吃D粽的人數(shù);
(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC的邊OA,OC分別在x軸、y軸上,點B在第一象限,點D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關于直線OD對稱(點A′和A,B′和B分別對應).若AB=1,反比例函數(shù)y=(k≠0)的圖象恰好經過點A′,B,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】興隆湖是成都天府新區(qū)著名的生態(tài)綠地工程.在一次戶外綜合實踐活動中,小明同學所在的興趣小組用無人機航拍測量云圖廣場A與南山碼頭B的直線距離.由于無人機控制距離有限,為了安全,不能直接測量,他們采用如下方法:如圖,小明在云圖廣場A的正上方點C處測得南山碼頭B的俯角α=17.09°;接著無人機往南山碼頭B方向水平飛行0.9千米到達點D處,測得此時南山碼頭B的俯角β=45°.已知AC⊥AB,CD∥AB,請根據測量數(shù)據計算A,B兩地的距離.(結果精確到0.1km,參考數(shù)據:sinα≈0.29,tanα≈0.31,sinβ≈0.71)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線:y1=與x軸、y軸相交于A、B兩點,與雙曲線(k<0,x>0)相交于第四象限的點C,過點C作直線l⊥x軸,垂足為D,若△ABD的面積為,且B是AC的中點.
(1)求k的值;
(2)直接寫出的解集;
(3)若P為直線l的一動點,點P的縱坐標為m,∠APB≥30°,求m的范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com