如圖,AD∥BC,∠A=90°,以點(diǎn)B為圓心,BC長(zhǎng)為半徑畫(huà)弧,交射線AD于點(diǎn)E,連接BE,過(guò)點(diǎn)C作CF⊥BE,垂足為F,求證:AB=FC.
先根據(jù)平行線的性質(zhì)證得∠AEB=∠EBC,再結(jié)合∠A=90°,CF⊥BE,BE=BC即可根據(jù)“AAS”證得△ABE≌△FCB,從而證得結(jié)論.
解析試題分析:∵AD∥BC,
∴∠AEB=∠EBC.
∵∠A=90°,CF⊥BE.
∴∠A=∠CFB=90°.
∵BE=BC,
∴△ABE≌△FCB(AAS).
∴AB=FC.
考點(diǎn):平行線的性質(zhì),全等三角形的判定和性質(zhì)
點(diǎn)評(píng):全等三角形的判定和性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見(jiàn)的知識(shí)點(diǎn),一般難度不大,需熟練掌握.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com