如圖,AD∥BC,∠A=90°,以點(diǎn)B為圓心,BC長(zhǎng)為半徑畫(huà)弧,交射線AD于點(diǎn)E,連接BE,過(guò)點(diǎn)C作CF⊥BE,垂足為F,求證:AB=FC.

先根據(jù)平行線的性質(zhì)證得∠AEB=∠EBC,再結(jié)合∠A=90°,CF⊥BE,BE=BC即可根據(jù)“AAS”證得△ABE≌△FCB,從而證得結(jié)論.

解析試題分析:∵AD∥BC,
∴∠AEB=∠EBC.
∵∠A=90°,CF⊥BE.
∴∠A=∠CFB=90°.
∵BE=BC,
∴△ABE≌△FCB(AAS).
∴AB=FC.
考點(diǎn):平行線的性質(zhì),全等三角形的判定和性質(zhì)
點(diǎn)評(píng):全等三角形的判定和性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見(jiàn)的知識(shí)點(diǎn),一般難度不大,需熟練掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,AD∥BC,則下列式子成立的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖:AD∥BC,AB=AC,∠BAC=80°,則∠DAC=
50
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、如圖,AD⊥BC,DE∥AB,則∠CDE與∠BAD的關(guān)系是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知如圖,AD=BC,要得到△ABD≌△CDB,可以添加角的條件:∠
ADB
ADB
=∠
CBD
CBD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,AD⊥BC,EF⊥BC,∠1=∠2.求證:AB∥GF.

查看答案和解析>>

同步練習(xí)冊(cè)答案