【題目】若a+b=2,則稱a與b是關(guān)于1的平衡數(shù).
(1)3與 是關(guān)于1的平衡數(shù),5﹣ 與 是關(guān)于1的平衡數(shù);
(2)若(m+)×(1﹣)=﹣5+3,判斷m+與5﹣是否是關(guān)于1的平衡數(shù),并說明理由.
【答案】(1)﹣1,﹣3+;(2)不是,理由見解析.
【解析】試題分析:(1)根據(jù)所給的例子,可得出平衡數(shù)的求法,由此可得出答案.
(2)根據(jù)所給的等式,解出m的值,進而再代入判斷即可.
試題解析:(1)由題意得,3+(﹣1)=2,5﹣+(﹣3+)=2,
∴3與﹣1是關(guān)于1的平衡數(shù),5﹣與﹣3+是關(guān)于1的平衡數(shù);
(2)不是.
∵(m+)×(1﹣)
=m﹣m+﹣3,
又∵(m+)×(1﹣)=﹣5+3,
∴m﹣m+﹣3=﹣5+3,
∴m﹣m=﹣2+2.
即 m(1﹣)=﹣2(1﹣).
∴m=﹣2.
∴(m+)+(5﹣)=(﹣2+)+(5﹣)=3,
∴(﹣2+)與(5﹣)不是關(guān)于1的平衡數(shù).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小紅把一枚硬幣拋擲10次,結(jié)果有4次正面朝上,那么( 。
A. 正面朝上的頻數(shù)是0.4 B. 反面朝上的頻數(shù)是6
C. 正面朝上的頻率是4 D. 反面朝上的頻率是6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)某校為表彰在美術(shù)展覽活動中獲獎的同學(xué),決定購買一些水筆和顏料盒作為獎品,請你根據(jù)圖中所給的信息,解答下列問題:
(1)求出每個顏料盒、每支水筆各多少元?
(2)若學(xué)校計劃購買顏料盒和水筆共20個,所用費用不超過340元,則顏料盒至多購買多少個?
(3)恰逢商店舉行優(yōu)惠促銷活動,具體辦法如下:顏料盒按七折優(yōu)惠,水筆10支以上超出部分按八折優(yōu)惠,若學(xué)校決定購買同種數(shù)量的同一獎品,并且該獎品的數(shù)量超過10件,請你幫助分析,購買顏料盒合算還是購買水筆合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3交x軸于A(﹣1,0)和B(5,0),交y軸于點C,點D是線段OB上一動點,連接CD,將CD繞點D順時針旋轉(zhuǎn)90°得到線段DE,過點E作直線l⊥x軸,垂足為H,過點C作CF⊥l于F,連接DF,CE交于點G.
(1)求拋物線解析式;
(2)求線段DF的長;
(3)當(dāng)DG=時,
①求tan∠CGD的值;
②試探究在x軸上方的拋物線上,是否存在點P,使∠EDP=45°?若存在,請寫出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,六邊形ABCDEF的內(nèi)角都相等,CF∥AB.
(1)求∠FCD的度數(shù);
(2)求證:AF∥CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,有一塊直角三角板XYZ(其中∠X=90°)放置在△ABC上,恰好三角板XYZ的兩條直角邊XY,XZ分別經(jīng)過B,C兩點,且直角頂點X在△ABC內(nèi)部.
①若∠A=40°,∠ABC+∠ACB= °;∠XBC+∠XCB= °;
②試判斷∠A與∠XBA+∠XCA之間存在怎樣數(shù)量關(guān)系?并寫出證明過程.
(2)如圖2,如果直角頂點X在△ABC外部,試判斷∠A、∠XBA、∠XCA之間又存在怎樣的數(shù)量關(guān)系?(只寫出答案,無需證明).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com