如圖,直線AB、CD相交于點(diǎn)O,OM⊥AB.
(1)若∠1=∠2,求∠NOD.
(2)若∠1=
13
∠BOC,求∠AOC與∠MOD.
分析:(1)根據(jù)垂直的定義可得∠1+∠AOC=90°,再求出∠2+∠AOC=90°,然后根據(jù)平角等于180°列式求解即可;
(2)根據(jù)垂直的定義可得∠AOM=∠BOM=90°,然后列方程求出∠1,再根據(jù)余角和鄰補(bǔ)角的定義求解即可.
解答:解:(1)∵OM⊥AB,
∴∠AOM=∠1+∠AOC=90°,
∵∠1=∠2,
∴∠NOC=∠2+∠AOC=90°,
∴∠NOD=180°-∠NOC=180°-90°=90°;

(2)∵OM⊥AB,
∴∠AOM=∠BOM=90°,
∵∠1=
1
3
∠BOC,
∴∠BOC=∠1+90°=3∠1,
解得∠1=45°,
∠AOC=90°-∠1=90°-45°=45°,
∠MOD=180°-∠1=180°-45°=135°.
點(diǎn)評(píng):本題考查了垂線的定義,鄰補(bǔ)角的定義,是基礎(chǔ)題,熟記概念并準(zhǔn)確識(shí)圖,找準(zhǔn)各角之間的關(guān)系是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,直線AB、CD、EF都經(jīng)過點(diǎn)O,且AB⊥CD,∠COE=35°,求∠DOF、∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線AB與CD相交于點(diǎn)O,OE⊥AB,OF⊥CD.
(1)圖中∠AOF的余角是
 
(把符合條件的角都填出來).
(2)圖中除直角相等外,還有相等的角,請(qǐng)寫出三對(duì):
 
;②
 
;③
 

(3)①如果∠AOD=140°.那么根據(jù)
 
,可得∠BOC=
 
度.
②如果∠EOF=
15
∠AOD
,求∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、完成推理填空:如圖:直線AB、CD被EF所截,若已知AB∥CD,
求證:∠1=∠2.
請(qǐng)你認(rèn)真完成下面填空.
證明:∵AB∥CD    (已知),
∴∠1=∠
3
( 兩直線平行,
同位角相等
 )
又∵∠2=∠3,(
對(duì)頂角相等
 )
∴∠1=∠2 (
等量代換
 ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB、CD、EF相交于點(diǎn)O,AB⊥CD,OG平分∠AOE,∠FOD=24°,∠COG的度數(shù)=
33°
33°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB,CD相交于O點(diǎn),EO⊥CD,垂足為O點(diǎn),若∠BOE=50°,求∠AOD的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案