(南京市2003年中考試題)如圖所示,在ABC中,AB=ACDBC的中點(diǎn),DEAB,DFAC,垂足分別是EF

  求證:(1)BDE≌△CDF;

  (2)A=90°時(shí),四邊形AEDF是正方形.

 

答案:B
解析:

  證明:(1)∵ AB=AC∴ ∠B=C

  ∵ DEAB,DFAC,

  ∴ ∠BED=CFD=90°.

  又BD=CD,∴ △BED≌△CFD

  (2)∵ ∠AED=AFD=A=90°,

  ∴ 四邊形AEDF是矩形.

  ∵ △BED≌△CFD,∴ DE=DF∴ 四邊形AEDF是正方形.

  點(diǎn)評(píng):本例題是有關(guān)特殊四邊形證明的常規(guī)題,在中考中常出現(xiàn),一般較易證.證明正方形時(shí)一般有兩種渠道,其一是證有一個(gè)角是直角的菱形,其二是證有一組鄰邊相等的矩形.

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:013

  (南京市2003年中考試題)拋物線y=(x-1)2+1的頂點(diǎn)坐標(biāo)是   ( )

  A(1,1)

  B(-11)

  C(1,-1)

  D(-1-1)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:013

  (南京市2003年中考試題)ABC中,C=90°,tanA=1,那么cotB等于   ( )

  A      B     C1       D

 

查看答案和解析>>

同步練習(xí)冊(cè)答案