【題目】如圖,一次函數(shù)y=﹣x+的圖象與反比例函數(shù)y=(k>0)的圖象交于A,B兩點,過A點作x軸的垂線,垂足為M,△AOM面積為1.
(1)求反比例函數(shù)的解析式;
(2)在y軸上求一點P,使PA+PB的值最小,并求出其最小值和P點坐標.
【答案】(1) (2)(0,)
【解析】
(1)根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義得出|k|=1,進而得到反比例函數(shù)的解析式;
(2)作點A關(guān)于y軸的對稱點A′,連接A′B,交y軸于點P,得到PA+PB最小時,點P的位置,根據(jù)兩點間的距離公式求出最小值A′B的長;利用待定系數(shù)法求出直線A′B的解析式,得到它與y軸的交點,即點P的坐標.
(1)∵反比例函數(shù) y= =(k>0)的圖象過點 A,過 A 點作 x 軸的垂線,垂足為 M,
∴|k|=1,
∵k>0,
∴k=2,
故反比例函數(shù)的解析式為:y=;
(2)作點 A 關(guān)于 y 軸的對稱點 A′,連接 A′B,交 y 軸于點 P,則 PA+PB 最。
由,解得,或,
∴A(1,2),B(4,),
∴A′(﹣1,2),最小值 A′B= =,
設直線 A′B 的解析式為 y=mx+n,
則 ,解得,
∴直線 A′B 的解析式為 y= ,
∴x=0 時,y= ,
∴P 點坐標為(0,).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠BCD=90°,將四邊形ABCD沿AB方向平移得到四邊形A'B'C'D',BC與C'D'相交于點E,若BC=8,CE=3,C'E=2,則陰影部分的面積為( )
A.12+2B.13C.2+6D.26
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在下列方程中,一元二次方程的個數(shù)是( )
①3x2+7=0;②ax2+bx+c=0;③(x﹣2)(x+5)=x2﹣1;④3x2﹣=0.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,等腰梯形ABCD的頂點坐標分別為A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A為對稱中心作點P(0,2)的對稱點P1,以B為對稱中心作點P1的對稱點P2,以C為對稱中心作點P2的對稱點P3,以D為對稱中心作點P3的對稱點P4,…,重復操作依次得到點P1,P2,…,則點P2010的坐標是( 。
A. (2010,2) B. (2010,﹣2) C. (2012,﹣2) D. (0,2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC與BD交于點O.過點C作BD的平行線,過點D作AC的平行線,兩直線相交于點E.
(1)求證:四邊形OCED是矩形;
(2)若CE=1,DE=2,ABCD的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,已知AB=AC,∠BAC=90°,E為邊AC上一點,連接BE.
(1)如圖1,若∠ABE=15°,O為BE中點,連接AO,且AO=1,求BC的長;
(2)如圖2,D為AB上一點,且滿足AE=AD,過點A作AF⊥BE交BC于點F,過點F作FG⊥CD交BE的延長線于點G,交AC于點M,求證:BG=AF+FG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=30°,P點在∠AOB內(nèi)部,M點在射線OA上,將線段PM繞P點逆時針旋轉(zhuǎn)90°,M點恰好落在OB上的N點(OM>ON),若PM=,ON=8,則OM=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】初三(1)班要從2男2女共4名同學中選人做晨會的升旗手.
(1)若從這4人中隨機選1人,則所選的同學性別為男生的概率是 .
(2)若從這4人中隨機選2人,求這2名同學性別相同的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,PD切⊙O于點C,與BA的延長線交于點D,DE⊥PO交PO延長線于點E,連接PB,∠EDB=∠EPB.
(1)求證:PB是⊙O的切線.
(2)若PB=3,DB=4,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com