【題目】某學校為了豐富學生課余生活,開展了第二課堂活動,推出了以下四種選修課程:.繪畫;.唱歌;.跳舞;.演講;.書法.學校規(guī)定:每個學生都必須報名且只能選擇其中的一個課程.學校隨機抽查了部分學生,對他們選擇的課程情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖.

請結(jié)合統(tǒng)計圖中的信息解決下列問題:

1)這次抽查的學生人數(shù)是多少人?

2)將條形統(tǒng)計圖補充完整.

3)求扇形統(tǒng)計圖中課程所對應(yīng)扇形的圓心角的度數(shù).

4)如果該校共有1200名學生,請你估計該校選擇課程的學生約有多少人.

【答案】1100人;(220人,詳見解析;(3;(4)約有300

【解析】

1)由D課程的人數(shù)及其所占百分比可得總?cè)藬?shù);
2)根據(jù)各課程人數(shù)之和等于總?cè)藬?shù)求出C課程的人數(shù),從而補全圖形;
3)用360°乘以課程E人數(shù)所占比例即可得;
4)用總?cè)藬?shù)乘以樣本中課程D人數(shù)所占比例即可得.

解:(1)這次調(diào)查的學生人數(shù)是(人).

2(人),補全條形統(tǒng)計圖如圖所示.

3)課程所對應(yīng)扇形的圓心角的度數(shù)是

4(人),

估計該校1200名學生中報課程的學生約有300人.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,函數(shù),,的圖象圍成陰影部分的面積是___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,E上的任意一點,連接,將沿BE折疊,使點A落在點D處,連接,若是直角三角形,則的長為__________


查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC內(nèi)接于⊙OAB是⊙O的直徑,ODAC,ADOC

1)求證:四邊形OCAD是平行四邊形;

2)若AD與⊙O相切,求∠B

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為挑選優(yōu)秀同學參加云南省級英語聽說能力競賽,某中學舉行了“英語單詞聽寫”競賽,每位學生聽寫單詞99個,比賽結(jié)束后隨機抽查部分學生的聽寫結(jié)果,以下是根據(jù)抽查結(jié)果繪制的統(tǒng)計圖的一部分.

根據(jù)以上信息解決下列問題:

1)本次共隨機抽查了   名學生,并補全頻數(shù)分布直方圖;

2)若把每組聽寫正確的個數(shù)用這組數(shù)據(jù)的組中值代替,則被抽查學生聽寫正確的個數(shù)的平均數(shù)是多少?

3)該校共有3000名學生,如果聽寫正確的個數(shù)少于60個定為不合格,請你估計這所學校本次競賽聽寫不合格的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca0)的圖象與x軸的兩個交點A、B的橫坐標分別為﹣3、1,與y軸交于點C,下面四個結(jié)論:

16a+4b+c0

②若P(﹣5,y1),Qy2)是函數(shù)圖象上的兩點,則y1y2;

c3a;

④若△ABC是等腰三角形,則b=﹣或﹣

其中正確的有_____.(請將正確結(jié)論的序號全部填在橫線上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為促進消費,杭州市政府開展發(fā)放政府補貼消費的“消費券”活動,一超市的月銷售額逐步增加.據(jù)統(tǒng)計,2月份銷售額為200萬元,4月份銷售額為500萬元.若3,4月平均每月的增長率為x,則( )

A.200(1x)=500B.200(1x)+200+(1x)2500

C.200(1x)2500D.200200(1x)+200(1x)2500

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y(k為常數(shù),k0)的圖象交于二、四象限內(nèi)的A、B兩點,與y軸交于C點.點A的坐標為(m,5),點B的坐標為(5n),tanAOC

1)求k的值;

2)直接寫出點B的坐標,并求直線AB的解析式;

3Py軸上一點,且SPBC=2SAOB,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,將ABC沿直線AB翻折得到ABD,連接CDAB于點ME是線段CM上的點,連接BEFBDE的外接圓與AD的另一個交點,連接EFBF,

1)求證:BEF是直角三角形;

2)求證:BEFBCA;

3)當AB=6,BC=m時,在線段CM正存在點E,使得EFAB互相平分,求m的值.

查看答案和解析>>

同步練習冊答案