已知二次函數(shù)y=-x2+4x+5圖像交x軸于點(diǎn)A、B,交y軸于點(diǎn)C,點(diǎn)D是該函數(shù)圖像上一點(diǎn),且點(diǎn)D的橫坐標(biāo)為4,連BD,點(diǎn)P是AB上一動(dòng)點(diǎn)(不與點(diǎn)A重合),過(guò)P作PQ⊥AB交射線AD于點(diǎn)Q,以PQ為一邊在PQ的右側(cè)作正方形PQMN.設(shè)點(diǎn)P的坐標(biāo)為(t ,0).

(1)求點(diǎn)B,C,D的坐標(biāo)及射線AD的解析式;

(2)在AB上是否存在點(diǎn)P,使⊿OCM為等腰三角形?若存在,求正方形PQMN 的邊長(zhǎng);若不存在,請(qǐng)說(shuō)明理由;

(3)設(shè)正方形PQMN與⊿ABD重疊部分面積為s,求s與t的函數(shù)關(guān)系式.

 

【答案】

(1)B(5,0),C(0,5),D(4,5)

     (2)∵直線AD的解析式為:,且P(t,0)。  ∴Q(t,t+1),M(2t+1,t+1)

       當(dāng)MC=MO時(shí):t+1=     ∴邊長(zhǎng)為。

      當(dāng)OC=OM時(shí):  

       解得(舍去)

        ∴邊長(zhǎng)為。

       當(dāng)CO=CM時(shí):

       解得(舍去)

        ∴邊長(zhǎng)為

     (3)當(dāng)時(shí):

          當(dāng)時(shí):;

          當(dāng)時(shí):;

          當(dāng)時(shí):;

【解析】(1)根據(jù)二次函數(shù)解析式,當(dāng)x=0時(shí),求出C點(diǎn)坐標(biāo);當(dāng)y=0時(shí),求出B點(diǎn)坐標(biāo)及點(diǎn)A坐標(biāo);將

D點(diǎn)橫坐標(biāo)代入y=-x2+4x+5,即可求出點(diǎn)D縱坐標(biāo);根據(jù)點(diǎn)A、點(diǎn)D坐標(biāo),應(yīng)用待定系數(shù)法即可求出射線

AD解析式;

(2)假設(shè)存在點(diǎn)P,使△OCM為等腰三角形,根據(jù)勾股定理,若能求出P點(diǎn)坐標(biāo),則P存在,同時(shí)可求出

正方形PQMN 的邊長(zhǎng);否則P不存在;

(3)由于重疊部分面積是不確定的,所以要根據(jù)其重疊程度,分情況討論,得到不同的表達(dá)式.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=-x2+bx+c的圖象過(guò)點(diǎn)A(1,2),B(3,2),C(0,-1),D(2,3).點(diǎn)P(x1,y1),Q(x2,y2)也在該函數(shù)的圖象上,當(dāng)0<x1<1,2<x2<3時(shí),y1與y2的大小關(guān)系正確的是( 。
A、y1≥y2B、y1>y2C、y1<y2D、y1≤y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(0,3),頂點(diǎn)坐標(biāo)為(1,4),
(1)求這個(gè)二次函數(shù)的解析式;
(2)求圖象與x軸交點(diǎn)A、B兩點(diǎn)的坐標(biāo);
(3)圖象與y軸交點(diǎn)為點(diǎn)C,求三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•莒南縣二模)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實(shí)數(shù)).
其中正確的結(jié)論有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:①ac>0;②a-b+c<0;
③當(dāng)x<0時(shí),y<0;④方程ax2+bx+c=0(a≠0)有兩個(gè)大于-1的實(shí)數(shù)根;⑤2a+b=0.其中,正確的說(shuō)法有
②④⑤
②④⑤
.(請(qǐng)寫出所有正確說(shuō)法的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),已知A點(diǎn)坐標(biāo)為(-1,0),且對(duì)稱軸為直線x=2,則B點(diǎn)坐標(biāo)為
(5,0)
(5,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案