如圖,△ABC,△DCE均是等邊三角形,則圖中的某個(gè)三角形一定可通過另一個(gè)三角形的旋轉(zhuǎn)而得到,它們是(  )
分析:根據(jù)等邊三角形性質(zhì)求出BC=AC,CD=CE,∠BCA=∠DCE=60°,求出∠BCD=∠ACE,推出△BCD≌△ACE,根據(jù)旋轉(zhuǎn)的性質(zhì)得出即可.
解答:解:∵△ABC,△DCE均是等邊三角形,
∴BC=AC,CD=CE,∠BCA=∠DCE=60°,
∴∠ACB+∠ACD=∠DCE+∠ACD,
即∠BCD=∠ACE,
在△BCD和△ACE中
BC=AC
∠BCD=∠ACE
CD=CE

∴△BCD≌△ACE(SAS),
∴△ACE可以通過△BCD繞C點(diǎn)旋轉(zhuǎn)60°得到,
故選C.
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,等邊三角形的性質(zhì)的應(yīng)用,主要考查學(xué)生的推理能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖,△ABC中,∠ACB=90°,CD⊥AB于D,則圖中所有與∠B互余的角
∠A與∠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC內(nèi)接于⊙O,AB的延長(zhǎng)線與過C點(diǎn)的切線GC相交于點(diǎn)D,BE與AC相交于點(diǎn)F精英家教網(wǎng),且CB=CE.
求證:(1)BE∥DG;
(2)CB2-CF2=BF•FE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、已知:如圖,△ABC內(nèi)接于⊙O,AE切⊙O于點(diǎn)A,BD∥AE交AC的延長(zhǎng)線于點(diǎn)D,求證:AB2=AC•AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC、△DCE、△FEG是全等的三個(gè)等腰三角形,底邊BC、CE、EG在同一直線上,且AB=
3
,BC=1,連接BF交AC、DC、DE分別為P、Q、R.
試證△BFG∽△FEG,并求出BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC的兩個(gè)外角的平分線相交于D,若∠B=50°,則∠ADC=( 。
A、60°B、80°C、65°D、40°

查看答案和解析>>

同步練習(xí)冊(cè)答案