如圖,在矩形ABCD中,AB=12厘米,BC=6厘米.點(diǎn)P沿AB邊從A開(kāi)始向點(diǎn)B以2厘米/秒的速度移動(dòng);點(diǎn)Q沿DA邊從點(diǎn)D開(kāi)始向點(diǎn)A以1厘米/秒的速度移動(dòng).如果P、Q同時(shí)出發(fā),用t(秒)表示移動(dòng)的時(shí)間(0≤t≤6),那么:

(1)當(dāng)t為何值時(shí),⊿QAP為等腰直角三角形?

(2)求四邊形QPAC的面積;提出一個(gè)與計(jì)算結(jié)果有關(guān)的結(jié)論;

(3)當(dāng)t為何值時(shí),以點(diǎn)Q、A、P為頂點(diǎn)的三角形與⊿ABC相似?

答案:
解析:

  解:(1)對(duì)于任何時(shí)刻t,AP=2t,DQ=t,QA=6-t當(dāng)QA=AP時(shí),⊿QAP為等腰直角三角形.即6-t=2t,解得t=2(秒)所以當(dāng)t=2秒時(shí)⊿QAP為等腰直角三角形

  (2)在⊿QAC中,QA=6-t,QA邊上的高DC=12;∴S⊿QACQA·DC=(6-t)·12=36-6t

  在⊿APC中,AP=2t;BC=6;∴S⊿APCAP·BC=2t·6=6t

  ∴SQAPC=S⊿QAC+S⊿APC=36-6t+6t=36(厘米2)

  (3)根據(jù)題意,可分為兩種情況來(lái)研究.在矩形ABCD中:

 、佼(dāng)時(shí),⊿QAP∽⊿ABC,那么有解得t=1.2(秒)

  即當(dāng)t=1.2秒時(shí),⊿QAP∽⊿ABC

 、诋(dāng)時(shí),⊿PAQ∽⊿ABC解得t=3(秒)

  即當(dāng)t=3秒時(shí),⊿PAQ∽⊿ABC

  ∴當(dāng)t=1.2秒或t=3秒時(shí),以點(diǎn)Q、A、P為頂點(diǎn)的三角形與⊿ABC相似.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點(diǎn)P從點(diǎn)A出發(fā)以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā)以2cm/s的速度向點(diǎn)C運(yùn)動(dòng),設(shè)經(jīng)過(guò)的時(shí)間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關(guān)系的是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,點(diǎn)O在對(duì)角線AC上,以O(shè)A的長(zhǎng)為半徑的⊙O與AD、AC分別交于點(diǎn)E、F,且∠ACB=∠DCE精英家教網(wǎng)
(1)判斷直線CE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C→D路線向點(diǎn)D勻速運(yùn)動(dòng),到達(dá)點(diǎn)D后停止;點(diǎn)Q從點(diǎn)D出發(fā),沿 D→C→B→A路線向點(diǎn)A勻速運(yùn)動(dòng),到達(dá)點(diǎn)A后停止.若點(diǎn)P、Q同時(shí)出發(fā),在運(yùn)動(dòng)過(guò)程中,Q點(diǎn)停留了1s,圖②是P、Q兩點(diǎn)在折線AB-BC-CD上相距的路程S(cm)與時(shí)間t(s)之間的函數(shù)關(guān)系圖象.
(1)請(qǐng)解釋圖中點(diǎn)H的實(shí)際意義?
(2)求P、Q兩點(diǎn)的運(yùn)動(dòng)速度;
(3)將圖②補(bǔ)充完整;
(4)當(dāng)時(shí)間t為何值時(shí),△PCQ為等腰三角形?請(qǐng)直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,∠AOB=60°,AB=6,則AD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動(dòng)點(diǎn)(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點(diǎn)F,設(shè)CE=x,BF=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)x為何值時(shí),y的值最大,最大值是多少?
(3)若設(shè)線段AB的長(zhǎng)為m,上述其它條件不變,m為何值時(shí),函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習(xí)冊(cè)答案