【題目】某鮮花銷售部在春節(jié)前20天內(nèi)銷售一批鮮花.其中,該銷售部公司的鮮花批發(fā)部日銷售量y1(萬朵)與時間x(x為整數(shù),單位:天)關(guān)系為二次函數(shù),部分對應(yīng)值如表所示.與此同時,該銷售部還通過某網(wǎng)絡(luò)電子商務(wù)平臺銷售鮮花,網(wǎng)上銷售日銷售量y2(萬朵)與時間x(x為整數(shù),單位:天) 的函數(shù)關(guān)系如圖所示.
(1)求y1與x的二次函數(shù)關(guān)系式及自變量x的取值范圍;
(2)求y2與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)當(dāng)8≤x≤20時,設(shè)該花木公司鮮花日銷售總量為y萬朵,寫出y與時間x的函數(shù)關(guān)系式,并判斷第幾天日銷售總量y最大,并求出此時的最大值.
【答案】(1)y1與x的函數(shù)關(guān)系式為y1=﹣x2+5x(0≤x≤20);(2)y2與x的函數(shù)關(guān)系式是y2=.(3)當(dāng)8≤x≤20時,第12天日銷售總量y最大,此時的最大值是32萬朵.
【解析】試題分析:(1)根據(jù)題意可以得到y1與x的二次函數(shù)關(guān)系式及自變量x的取值范圍;
(2)根據(jù)題意和函數(shù)圖象可以得到y2與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)根據(jù)(1)和(2)中的結(jié)果可以得到y與時間x的函數(shù)關(guān)系式,然后化為頂點式,從而可以解答本題.
試題解析:(1)設(shè)y1與x的函數(shù)關(guān)系式為y1=ax2+bx+c,
,
解得, ,
即y1與x的函數(shù)關(guān)系式為y1=-x2+5x(0≤x≤20);
(2)設(shè)當(dāng)0≤x≤8時,y2=kx,
則4=8k,得k=,
即當(dāng)0≤x≤8時,y=x,
設(shè)當(dāng)8<x≤208時,y2=ax+b,
,得,
即當(dāng)8<x≤20時,y=x-4,
由上可得,y2與x的函數(shù)關(guān)系式是y2=.;
(3)由題意可得,
當(dāng)8≤x≤20時,y=-x2+5x+x-4= (x12)2+32,
∴x=12時,y取得最大值,此時y=32,
即當(dāng)8≤x≤20時,第12天日銷售總量y最大,此時的最大值是32萬朵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2-x-(m+1)=0有兩個不相等的實數(shù)根.
(1)求m的取值范圍;
(2)若m為符合條件的最小整數(shù),求此方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=Rt∠,直角邊AB、BC的長(AB<BC)是方程2-7+12=0的兩個根.點P從點A出發(fā),以每秒1個單位的速度沿△ABC邊 A→B→C→A的方向運動,運動時間為t(秒).
(1)求AB與BC的長;
(2)當(dāng)點P運動到邊BC上時,試求出使AP長為時運動時間t的值;
(3)點P在運動的過程中,是否存在點P,使△ABP是等腰三角形?若存在,請求出運動時間t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用科學(xué)記數(shù)法表示158000正確的是( )
A.1.58×106
B.1.58×105
C.1.58×104
D.158×103
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標(biāo)分別為A(1,1),B(4,2),C(3,4)
(1)請畫出將△ABC向左平移4個單位長度后得到的圖形△A1B1C1;
(2)請畫出△ABC關(guān)于原點O成中心對稱的圖形△A2B2C2;
(3)在x軸上找一點P,使PA+PB的值最小,請直接寫出點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com