【題目】改革開放以來,我國國民經(jīng)濟(jì)保持良好發(fā)展勢頭,國內(nèi)生產(chǎn)總值持續(xù)較快增長, 下圖是1998年~2002年國內(nèi)生產(chǎn)總值統(tǒng)計圖.
(1)從圖中可看出1999年國內(nèi)生產(chǎn)總值是___________.
(2)已知2002年國內(nèi)生產(chǎn)總值比2000年增加12956億元,2001年比2000年增加6491億元,求2002年國內(nèi)生產(chǎn)總值比2001年增長的百分率(結(jié)果保留兩個有效數(shù)字).
【答案】(1)82067億元;(2)6.7%
【解析】
試題分析:(1)直接根據(jù)表中數(shù)據(jù)即可得到結(jié)果;
(2)設(shè)2000年國內(nèi)生產(chǎn)總值為x億元,則2001年、2002年分別為(x+6491)億元,(x+12956)億元根據(jù)2002年的國內(nèi)生產(chǎn)總值即可列方程求出x,再根據(jù)增長率的定義即可求得結(jié)果.
(1)從圖中可看出1999年國內(nèi)生產(chǎn)總值是82067億元;
(2)設(shè)2000年國內(nèi)生產(chǎn)總值為x億元,則2001年、2002年分別為(x+6491)億元,(x+12956)億元,依題意得
x+12956=102398
解得x=89442,x+6491=95933
∴增長率=×100%≈6.7%
即2002年國內(nèi)生產(chǎn)總值比2001年增長6.7%.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知A(0,a),B(b,0),C(b,c)三點,其中a,b,c滿足關(guān)系式+(b-3)2=0,(c-4)2≤0.
(1)求a,b,c的值;
(2)求出三角形ABC的面積?
(3)如果在第二象限內(nèi)有一點P(m,),那么請用含m的式子表示四邊形ABOP的面積;
(4)在(3)的條件下,是否存在點P,使四邊形ABOP的面積與三角形ABC的面積相等?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AGF=∠ABC,∠1+∠2=180°.
(1)試判斷BF與DE的位置關(guān)系,并說明理由;
(2)若BF⊥AC,∠2=150°,求∠AFG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(7分)如圖,平行四邊形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中點,E是邊AD上的動點,EG的延長線與BC的延長線交于點F,連接CE,DF.
(1)求證:四邊形CEDF是平行四邊形;
(2)①當(dāng)AE= cm時,四邊形CEDF是矩形;
②當(dāng)AE= cm時,四邊形CEDF是菱形;(直接寫出答案,不需要說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一塊長16m,寬12m的矩形荒地上建造一個花園,要求花軒占地面積為荒地面積的一半,下面分別是小強和小穎的設(shè)計方案.
(1)你認(rèn)為小強的結(jié)果對嗎?請說明理由.
(2)請你幫助小穎求出圖中的x.
(3)你還有其他的設(shè)計方案嗎?請在圖(3)中畫出一個與圖(1)(2)有共同特點的設(shè)計草圖,并加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,則點A2 019的坐標(biāo)為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),矩形OABC的邊OA、OC在坐標(biāo)軸上,點B坐標(biāo)為(5,4),點P是射線BA上的一動點,把矩形OABC沿著CP折疊,點B落在點D處.
(1)當(dāng)點C、D、A共線時,AD= ;
(2)如圖(2),當(dāng)點P與點A重合時,CD與x軸交于點E,過點E作EF⊥AC,交BC于點F,請判斷四邊形AECF的形狀,并說明理由;
(3)若點D正好落在x軸上,請直接寫出點P的坐標(biāo): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,P是BC邊上不同于B、C的一動點,過P作PQ⊥AB,垂足為Q,連接AP.
(1)試說明不論點P在BC邊上何處時,都有△PBQ與△ABC相似;
(2)若Rt△AQP≌Rt△ACP≌Rt△BQP,求tanB的值;
(3)已知AC=3,BC=4,當(dāng)BP為何值時,△AQP面積最大,并求出最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點都在方格線的交點(格點)上.
(1)將△ABC繞C點按逆時針方向旋轉(zhuǎn)90°得到△A′B′C′,請在圖中畫出△A′B′C′.
(2)將△ABC向上平移1個單位,再向右平移5個單位得到△A″B″C″,請在圖中畫出△A″B″C″.
(3)若將△ABC繞原點O旋轉(zhuǎn)180°,A的對應(yīng)點A1的坐標(biāo)是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com