【題目】已知關(guān)于x的方程kx2-2x-1=0有兩個(gè)不相等的實(shí)數(shù)根,則k的最小整數(shù)值是_______________
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC∽△DEF,相似比為3:1,且△DEF的周長(zhǎng)為18,則△ABC的周長(zhǎng)為( )
A.3
B.2
C.6
D.54
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,假命題是( )
A. 垂直于同一條直線的兩直線平行 B. 已知直線a、b、c,若a⊥b,a∥c,則b⊥c
C. 互補(bǔ)的角是鄰補(bǔ)角 D. 鄰補(bǔ)角是互補(bǔ)的角
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A. (-5m)2=25m2 B. (-5m)2= -25m2 C. (-5m)2=10m2 D. (-5m)2=25m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題背景】
(1)如圖1的圖形我們把它稱為“8字形”,請(qǐng)說明;
【簡(jiǎn)單應(yīng)用】
(2)閱讀下面的內(nèi)容,并解決后面的問題:如圖2, AP、CP分別平分∠BAD. ∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度數(shù);
解:∵AP、CP分別平分∠BAD. ∠BCD
∴∠1=∠2,∠3=∠4
由(1)的結(jié)論得:
①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D
∴∠P = (∠B+∠D)=26°.
【問題探究】如圖3,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,請(qǐng)猜想的度數(shù),并說明理由.
【拓展延伸】
① 在圖4中,若設(shè)∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間的數(shù)量關(guān)系為:________________(用α、β表示∠P),
②在圖5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、∠D的關(guān)系,直接寫出結(jié)論______________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將(3x+2)﹣2(2x﹣1)去括號(hào)正確的是( )
A. 3x+2﹣2x+1 B. 3x+2﹣4x+1 C. 3x+2﹣4x﹣2 D. 3x+2﹣4x+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(4,﹣1).
(1)試作出△ABC以C為旋轉(zhuǎn)中心,沿順時(shí)針方向旋轉(zhuǎn)90°后的圖形△A1B1C;
(2)以原點(diǎn)O為對(duì)稱中心,再畫出與△ABC關(guān)于原點(diǎn)O對(duì)稱的△A2B2C2,并寫出點(diǎn)C2的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代《算法統(tǒng)宗》里這樣一首詩:我問開店李三公,眾客都來到店中,一房七客多七客,一房九客一房空.詩中后兩句的意思是:如果每一間客房住7人,那么有7人無房可。蝗绻恳婚g客房住9人,那么就空出一間房.
(1)求該店有客房多少間?房客多少人?
(2)假設(shè)店主李三公將客房進(jìn)行改造后,房間數(shù)大大增加.每間客房收費(fèi)20錢,且每間客房最多入住4人,一次性定客房18間以上(含18間),房費(fèi)按8折優(yōu)惠.若詩中“眾客”再次一起入住,他們?nèi)绾斡喎扛纤悖?/span>
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com