分析 因為BD、CE均為△ABC的高,則有AEC=∠ADB=∠BDC=90°;又知∠A=60°,可根據(jù)三角形的內(nèi)角和定理得到∠ACE=90°-∠A=90°-60°=30°,最后依據(jù)三角形的外角性質(zhì)定理即三角形的一個外角等于與它不相鄰的兩個內(nèi)角之和,得到∠BOC=∠BDC+∠ACE=90°+30°=120°.
解答 【解答】解:∵BD、CE均為△ABC的高,
∴∠AEC=∠ADB=∠BDC=90°,
∵∠A=60°,
∴∠ACE=90°-∠A=90°-60°=30°.
則∠BOC=∠BDC+∠ACE=90°+30°=120°.
故答案為120°.
點評 本題主要考查三角形的外角性質(zhì)及三角形的內(nèi)角和定理.解題的關(guān)鍵是熟練掌握三角形的外角性質(zhì)定理,即三角形的一個外角等于與它不相鄰的兩個內(nèi)角之和.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com