【題目】△ABC中,∠A=36°,將△ABC繞平面中的某一點(diǎn)D按順時針方向旋轉(zhuǎn)一定角度得到△ .
(1)若旋轉(zhuǎn)后的圖形如圖所示,請在圖中用尺規(guī)作出點(diǎn)D,請保留作圖痕跡,不要求寫作法;
(2)若將△ABC按順時針方向旋轉(zhuǎn)到△ 的旋轉(zhuǎn)角度為(0°<<180°),且AC⊥ ,直接寫出旋轉(zhuǎn)角度的值為_____.
【答案】(1)見解析;(2)54°.
【解析】
(1)連接AA1、CC1,然后作AA1、CC1的垂直平分線,交點(diǎn)即為旋轉(zhuǎn)中心D;
(2)作出圖形,根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠CAD=∠C1A1D,然后利用三角形的內(nèi)角和定理列式計算求出旋轉(zhuǎn)角的最小值,再依次寫出其他情況的旋轉(zhuǎn)角.
(1)如圖所示,點(diǎn)D即為所求的旋轉(zhuǎn)中心;
(2)如圖,由旋轉(zhuǎn)的性質(zhì),∠CAD=∠C1A1D,設(shè)為x,
則∠CAD+∠ADA1=∠B1A1C1+∠C1A1D+∠ADA1,
∵AC⊥A1B1,
∴∠ADA1=90°,
∴x+90°=32°+x+∠ADA1,
∴∠ADA1=58°,
即α=58°,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把拋物線y=x2平移得到拋物線m,拋物線m經(jīng)過點(diǎn)A(﹣6,0)和原點(diǎn)O(0,0),它的頂點(diǎn)為P,它的對稱軸與拋物線y=x2交于點(diǎn)Q,則圖中陰影部分的面積為 ▲ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC=6cm,點(diǎn)P 從點(diǎn)A 出發(fā),沿AB方向以每秒cm的速度向終點(diǎn)B運(yùn)動;同時,動點(diǎn)Q從點(diǎn)B出發(fā)沿BC方向以每秒1cm 的速度向終點(diǎn)C運(yùn)動,將△PQC沿BC翻折,點(diǎn)P的對應(yīng)點(diǎn)為點(diǎn)P′.設(shè)Q點(diǎn)運(yùn)動的時間 t 秒,若四邊形QPCP′為菱形,則 t 的值為( )
A. B. 2 C. 2 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)D為AB下方⊙O上一點(diǎn),點(diǎn)C為弧ABD的中點(diǎn),連接CD,CA.
(1)求證:∠ABD=2∠BDC;
(2)過點(diǎn)C作CH⊥AB于H,交AD于E,求證:EA=EC;
(3)在(2)的條件下,若OH=5,AD=24,求線段DE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,A(1,-1)、B(l,-3)、C(4,-3).
(1)△ 是△ABC關(guān)于x軸的對稱圖形,則點(diǎn)A的對稱點(diǎn)的坐標(biāo)是_______;
(2)將△ABC繞點(diǎn)(0,1)逆時針旋轉(zhuǎn)90 °得到△ABC,則B點(diǎn)的對應(yīng)點(diǎn)B的坐標(biāo)是____;
(3)△ 與△ABC是否關(guān)于某條直線成軸對稱?若成軸對稱,則對稱軸的解析式是_________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點(diǎn)E在BC邊上.AE=AB,將線段AC繞點(diǎn)A旋轉(zhuǎn)到AF的位置.使得∠CAF=∠BAE.連接EF,EF與AC交于點(diǎn)G.
(1)求證:EF =BC;
(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC向左平移5個單位長度后得到的△A1B1C1;
(2)請畫出△ABC關(guān)于原點(diǎn)對稱的△A2B2C2;
(3)在x軸上求作一點(diǎn)P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形 ABOC 的頂點(diǎn) B(2,1), 則頂點(diǎn) C 的坐標(biāo) 為 _____ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com