ABCD中,若AB=3cm,AD=5cm,則ABCD的周長(zhǎng)為          cm.

16

解析試題分析:平行四邊形的性質(zhì):平行四邊形的對(duì)邊相等.
ABCD
∴AB=CD=3cm,AD=BC=5cm
ABCD的周長(zhǎng)為16 cm.
考點(diǎn):平行四邊形的性質(zhì)
點(diǎn)評(píng):本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握平行四邊形的性質(zhì),即可完成.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1所示,在四邊形ABCD中,AC=BD,AC與BD相交于點(diǎn)O,E,F(xiàn)分別是AD、BC的中點(diǎn),連接EF,分別交AC、BD于點(diǎn)M,N,試判斷△OMN的形狀,并加以證明;(提示:利用三角形中位線定理)
(2)如圖2,在四邊形ABCD中,若AB=CD,E,F(xiàn)分別是AD、BC的中點(diǎn),連接FE并延長(zhǎng),分別與BA,CD的延長(zhǎng)線交于點(diǎn)M,N,請(qǐng)?jiān)趫D2中畫(huà)圖并觀察,圖中是否有相等的角?若有,請(qǐng)直接寫(xiě)出結(jié)論:
 
;
(3)如圖3,在△ABC中,AC>AB,點(diǎn)D在AC上,AB=CD,E,F(xiàn)分別是AD、BC的中點(diǎn),連接FE并延長(zhǎng),與BA的延長(zhǎng)線交于點(diǎn)M,若∠FEC=45°,判斷點(diǎn)M與以AD為直徑的圓的位置關(guān)系,并簡(jiǎn)要說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、在四邊形ABCD中,若AB∥CD,AD=BC,則四邊形ABCD為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,四邊形ABCD中,若AB∥CD,下列結(jié)論正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、在?ABCD中,若AB=4,則CD﹦
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖北)一張矩形紙片,剪下一個(gè)正方形,剩下一個(gè)矩形,稱(chēng)為第一次操作;在剩下的矩形紙片中再剪下一個(gè)正方形,剩下一個(gè)矩形,稱(chēng)為第二次操作;…;若在第n次操作后,剩下的矩形為正方形,則稱(chēng)原矩形為n階奇異矩形.如圖1,矩形ABCD中,若AB=2,BC=6,則稱(chēng)矩形ABCD為2階奇異矩形.

(1)判斷與操作:
如圖2,矩形ABCD長(zhǎng)為5,寬為2,它是奇異矩形嗎?如果是,請(qǐng)寫(xiě)出它是幾階奇異矩形,并在圖中畫(huà)出裁剪線;如果不是,請(qǐng)說(shuō)明理由.
(2)探究與計(jì)算:
已知矩形ABCD的一邊長(zhǎng)為20,另一邊長(zhǎng)為a(a<20),且它是3階奇異矩形,請(qǐng)畫(huà)出矩形ABCD及裁剪線的示意圖,并在圖的下方寫(xiě)出a的值.
(3)歸納與拓展:
已知矩形ABCD兩鄰邊的長(zhǎng)分別為b,c(b<c),且它是4階奇異矩形,求b:c(直接寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案