【題目】在一條直線上依次有A、B、C三個海島,某海巡船從A島出發(fā)沿直線勻速經(jīng)B 島駛向C島,執(zhí)行海巡任務(wù),最終達(dá)到C島.設(shè)該海巡船行駛x(h)后,與B港的距離為y(km),y與x的函數(shù)關(guān)系如圖所示.
(1)填空:A、C兩港口間的距離為km,a=;
(2)求y與x的函數(shù)關(guān)系式,并請解釋圖中點(diǎn)P的坐標(biāo)所表示的實(shí)際意義;
(3)在B島有一不間斷發(fā)射信號的信號發(fā)射臺,發(fā)射的信號覆蓋半徑為15km,求該海巡船能接受到該信號的時間有多長?

【答案】
(1)85;1.7h
(2)解:當(dāng)0<x≤0.5時,設(shè)y與x的函數(shù)關(guān)系式為:y=kx+b,

∵函數(shù)圖像經(jīng)過點(diǎn)(0,25),(0.5,0),

,

解得

所以,y=﹣50x+25;

當(dāng)0.5<x≤1.7時,設(shè)y與x的函數(shù)關(guān)系式為:y=mx+n,

∵函數(shù)圖像經(jīng)過點(diǎn)(0.5,0),(1.7,60),

,

解得

所以,y=50x﹣25;


(3)解:由﹣50x+25=15,

解得x=0.2,

由50x﹣25=15,

解得x=0.8.

所以,該海巡船能接受到該信號的時間為:0.6h


【解析】解:(1)由圖可知,A、B港口間的距離為25,B、C港口間的距離為60, 所以,A、C港口間的距離為:25+60=85km,
海巡船的速度為:25÷0.5=50km/h,
∴a=85÷50=1.7h.
所以答案是:85,1.7h;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=5,BC=6,AD為BC邊上的高,過點(diǎn)A作AE∥BC,過點(diǎn)D作DE∥AC,AE與DE交于點(diǎn)E,AB與DE交于點(diǎn)F,連結(jié)BE.求四邊形AEBD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點(diǎn)P(3a,a)是反比例函數(shù)y= (k>0)與⊙O的一個交點(diǎn),圖中陰影部分的面積為10π,則反比例函數(shù)的解析式為( )

A.y=
B.y=
C.y=
D.y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某倉儲中心有一斜坡AB,其坡度為i=1:2,頂部A處的高AC為4m,B、C在同一水平地面上.

(1)求斜坡AB的水平寬度BC;
(2)矩形DEFG為長方體貨柜的側(cè)面圖,其中DE=2.5m,EF=2m,將該貨柜沿斜坡向上運(yùn)送,當(dāng)BF=3.5m時,求點(diǎn)D離地面的高.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,點(diǎn)E,F(xiàn),G,H分別在邊AB,BC,CD,DA上,點(diǎn)P在矩形ABCD內(nèi).若AB=4cm,BC=6cm,AE=CG=3cm,BF=DH=4cm,四邊形AEPH的面積為5cm2 , 則四邊形PFCG的面積為cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:
(1)|﹣2|﹣(1+ 0+ ;
(2)(a﹣ )÷

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的頂點(diǎn)A,C分別在y軸,x軸上,∠ACB=90°,OA= ,拋物線y=ax2﹣ax﹣a經(jīng)過點(diǎn)B(2, ),與y軸交于點(diǎn)D.

(1)求拋物線的表達(dá)式;
(2)點(diǎn)B關(guān)于直線AC的對稱點(diǎn)是否在拋物線上?請說明理由;
(3)延長BA交拋物線于點(diǎn)E,連接ED,試說明ED∥AC的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一個長為2a、寬為2b的長方形其中a,b均為正數(shù),且a>b,沿圖中虛線用剪刀均勻分成四塊相同小長方形,然后按圖2方式拼成一個大正方形

1你認(rèn)為圖2中大正方形的邊長為 a+b ;小正方形陰影部分的邊長為 .(用含a、b的代數(shù)式表示

2仔細(xì)觀察圖2,請你寫出下列三個代數(shù)式:a+b2a-b2,ab所表示的圖形面積之間的相等關(guān)系,并選取適合a、b的數(shù)值加以驗(yàn)證

3已知a+b=7,ab=6求代數(shù)式a-b的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2 , 對于以下結(jié)論:
①abc>0;②a+3b+2c≤0;③對于自變量x的任意一個取值,都有 x2+x≥﹣ ;④在﹣2<x<﹣1中存在一個實(shí)數(shù)x0 , 使得x0=﹣ ,
其中結(jié)論錯誤的是 (只填寫序號).

查看答案和解析>>

同步練習(xí)冊答案