精英家教網 > 初中數學 > 題目詳情

【題目】已知關于x的二次函數y=ax2+bx+c的圖象經過點(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2 , 對于以下結論:
①abc>0;②a+3b+2c≤0;③對于自變量x的任意一個取值,都有 x2+x≥﹣ ;④在﹣2<x<﹣1中存在一個實數x0 , 使得x0=﹣ ,
其中結論錯誤的是 (只填寫序號).

【答案】②
【解析】解:由題意二次函數圖象如圖所示,

∴a<0.b<0,c>0,
∴abc>0,故①正確.
∵a+b+c=0,
∴c=﹣a﹣b,
∴a+3b+2c=a+3b﹣2a﹣2b=b﹣a,
又∵x=﹣1時,y>0,
∴a﹣b+c>0,
∴b﹣a<c,
∵c>O,
∴b﹣a可以是正數,
∴a+3b+2c≤0,故②錯誤.
所以答案是②.
∵函數y′= x2+x= (x2+ x)= (x+ 2 ,∵ >0,∴函數y′有最小值﹣ ,∴ x2+x≥﹣ ,故③正確.
∵y=ax2+bx+c的圖象經過點(1,0),
∴a+b+c=0,
∴c=﹣a﹣b,
令y=0則ax2+bx﹣a﹣b=0,設它的兩個根為x1 , 1,
∵x11= =﹣ ,∴x1=﹣ ,
∵﹣2<x1<x2 ,
∴在﹣2<x<﹣1中存在一個實數x0 , 使得x0=﹣ ,故④正確,
【考點精析】解答此題的關鍵在于理解二次函數圖象以及系數a、b、c的關系的相關知識,掌握二次函數y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關:對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】計算下列各題:
(1)﹣|﹣1|+ cos30°﹣(﹣ 2+(π﹣3.14)0
(2)(x﹣y)2﹣(x﹣2y)(x+y)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖:一輛汽車在一個十字路口遇到紅燈剎車停下,汽車里的駕駛員看地面的斑馬線前后兩端的視角分別是∠DCA=30°和∠DCB=60°,如果斑馬線的寬度是AB=3米,駕駛員與車頭的距離是0.8米,這時汽車車頭與斑馬線的距離x是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y= x2+bx+c經過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P是直線AC下方拋物線上的動點.

(1)求拋物線的解析式;
(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;
(3)當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,則(m﹣1)2+(n﹣1)2的最小值是( 。
A.6
B.3
C.﹣3
D.0

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,拋物線y=﹣ x2+ x+3與x軸交于A,B兩點(點A在點B左側),與y軸交于點C,拋物線的頂點為點E.

(1)判斷△ABC的形狀,并說明理由;
(2)經過B,C兩點的直線交拋物線的對稱軸于點D,點P為直線BC上方拋物線上的一動點,當△PCD的面積最大時,Q從點P出發(fā),先沿適當的路徑運動到拋物線的對稱軸上點M處,再沿垂直于拋物線對稱軸的方向運動到y軸上的點N處,最后沿適當的路徑運動到點A處停止.當點Q的運動路徑最短時,求點N的坐標及點Q經過的最短路徑的長;
(3)如圖2,平移拋物線,使拋物線的頂點E在射線AE上移動,點E平移后的對應點為點E′,點A的對應點為點A′,將△AOC繞點O順時針旋轉至△A1OC1的位置,點A,C的對應點分別為點A1 , C1 , 且點A1恰好落在AC上,連接C1A′,C1E′,△A′C1E′是否能為等腰三角形?若能,請求出所有符合條件的點E′的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,把一條拋物線先向上平移3個單位長度,然后繞原點選擇180°得到拋物線y=x2+5x+6,則原拋物線的解析式是( 。
A.y=﹣(x﹣ 2
B.y=﹣(x+ 2
C.y=﹣(x﹣ 2
D.y=﹣(x+ 2+

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,O為坐標原點,四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB= ,反比例函數y= 在第一象限內的圖象經過點A,與BC交于點F,則△AOF的面積等于(  )

A.60
B.80
C.30
D.40

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】有一根長40mm的金屬棒,欲將其截成x根7mm長的小段和y根9mm長的小段,剩余部分作廢料處理,若使廢料最少,則正整數x,y應分別為( )
A.x=1,y=3
B.x=3,y=2
C.x=4,y=1
D.x=2,y=3

查看答案和解析>>

同步練習冊答案