如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于A(-2,0),B(1,0),交y軸于C(0,-2),過(guò)B、C畫直線.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P在x軸負(fù)半軸上,且PB=PC,求OP的長(zhǎng);
(3)點(diǎn)M在二次函數(shù)圖象上,過(guò)M向直線BC作垂線,垂足為H.若M在y軸左側(cè),且△CHM△BOC,求點(diǎn)M的坐標(biāo).
(1)∵二次函數(shù)y=ax2+bx+c的圖象交x軸于A(-2,0),B(1,0),
∴設(shè)該二次函數(shù)的解析式為:y=a(x+2)(x-1),
將x=0,y=-2代入,得-2=a(0+2)(0-1),
解得a=1,
∴拋物線的解析式為y=(x+2)(x-1),即y=x2+x-2;

(2)如圖1.由(1)知,拋物線的解析式為y=x2-x-2,則C(0,-2).
設(shè)OP=x,則PB=PC=x+1,
在Rt△POC中,由勾股定理,得x2+22=(x+1)2,
解得,x=
3
2
,即OP=
3
2
;

(3)∵△CHM△BOC,
∴∠MCH=∠CBO.
(i)如圖2,當(dāng)點(diǎn)H在點(diǎn)C上方時(shí).
由(2)知,PB=PC,
∴∠PCB=∠CBP,即∠PCB=∠CBO.
又∵∠MCH=∠CBO,即∠MCB=∠CBO,
∴∠PCB=∠MCB,
∴點(diǎn)M是線段CP的延長(zhǎng)線與拋物線的交點(diǎn).
設(shè)直線CM的解析式為y=kx-2(k≠0),
把P(-
3
2
,0)代入,得-
3
2
k-2=0,
解得,k=-
4
3
,則直線CM的解析式是y=-
4
3
x-2,
y=-
4
3
x-2
y=x2+x-2

解得,
x=0
y=-2
(舍去),或
x=-
7
3
y=
10
9
,
∴M(-
7
3
10
9
);
(ii)如圖3,點(diǎn)H在點(diǎn)C下方時(shí).
∵∠MCH=∠CBO,
∴CMx軸,
∴yM=-2,
∴x2+x-2=-2,
解得x1=0(舍去),x2=-1
∴M(-1,-2).
綜上所述,點(diǎn)M的坐標(biāo)是M(-
7
3
,
10
9
)或M(-1,-2).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,拋物線y=ax2+c(a>0)經(jīng)過(guò)梯形ABCD的四個(gè)頂點(diǎn),梯形的底AD在x軸上,其中A(-2,0),B(-1,-3).
(1)求拋物線的解析式;
(2)點(diǎn)M為y軸上任意一點(diǎn),當(dāng)點(diǎn)M到A,B兩點(diǎn)的距離之和為最小時(shí),求此時(shí)點(diǎn)M的坐標(biāo);
(3)在第(2)問(wèn)的結(jié)論下,拋物線上的點(diǎn)P使S△PAD=4S△ABM成立,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xoy中,點(diǎn)A在y軸上坐標(biāo)為(0,3),點(diǎn)B在x軸上坐標(biāo)為(10,0),BC⊥x軸,直線AC交x軸于M,tan∠ACB=2.
(1)求直線AC的解析式;
(2)點(diǎn)P在線段OB上,設(shè)OP=x,△APC的面積為S.請(qǐng)寫出S關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)探索:在線段OB上是否存在一點(diǎn)P,使得△APC是直角三角形?若存在,求出x的值,若不存在,請(qǐng)說(shuō)明理由;
(4)當(dāng)x=4時(shí),設(shè)頂點(diǎn)為P的拋物線與y軸交于D,且△PAD是等腰三角形,求該拋物線的解析式.(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

附加題:已知二次函數(shù)y=ax2+bx+c的圖象G和x軸有且只有一個(gè)交點(diǎn)A,與y軸的交點(diǎn)為B(0,4),且ac=b.
(1)求該二次函數(shù)的解析表達(dá)式;
(2)將一次函數(shù)y=-3x的圖象作適當(dāng)平移,使它經(jīng)過(guò)點(diǎn)A,記所得的圖象為L(zhǎng),圖象L與G的另一個(gè)交點(diǎn)為C,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

新星電子科技公司積極應(yīng)對(duì)2008年世界金融危機(jī),及時(shí)調(diào)整投資方向,瞄準(zhǔn)光伏產(chǎn)業(yè),建成了太陽(yáng)能光伏電池生產(chǎn)線.由于新產(chǎn)品開發(fā)初期成本高,且市場(chǎng)占有率不高等因素的影響,產(chǎn)品投產(chǎn)上市一年來(lái),公司經(jīng)歷了由初期的虧損到后來(lái)逐步盈利的過(guò)程(公司對(duì)經(jīng)營(yíng)的盈虧情況每月最后一天結(jié)算1次).公司累積獲得的利潤(rùn)y(萬(wàn)元)與銷售時(shí)間第x(月)之間的函數(shù)關(guān)系式(即前x個(gè)月的利潤(rùn)總和y與x之間的關(guān)系)對(duì)應(yīng)的點(diǎn)都在如圖所示的圖象上.該圖象從左至右,依次是線段OA、曲線AB和曲線BC,其中曲線AB為拋物線的一部分,點(diǎn)A為該拋物線的頂點(diǎn),曲線BC為另一拋物線y=-5x2+205x-1230的一部分,且點(diǎn)A,B,C的橫坐標(biāo)分別為4,10,12.
(1)求該公司累積獲得的利潤(rùn)y(萬(wàn)元)與時(shí)間第x(月)之間的函數(shù)關(guān)系式;
(2)直接寫出第x個(gè)月所獲得S(萬(wàn)元)與時(shí)間x(月)之間的函數(shù)關(guān)系式(不需要寫出計(jì)算過(guò)程);
(3)前12個(gè)月中,第幾個(gè)月該公司所獲得的利潤(rùn)最多,最多利潤(rùn)是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),交y軸于點(diǎn)B.
(1)求拋物線和直線AB的解析式;
(2)連結(jié)CA,CB,對(duì)稱軸x=1與線段AB交于點(diǎn)D,求△CAB的鉛垂高CD及S△CAB;
(3)如圖2,點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn),連結(jié)PA,PB,是否存在一點(diǎn)P,使S△PAB=
9
8
S△CAB?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,一個(gè)運(yùn)動(dòng)員推鉛球,鉛球在點(diǎn)A處出手,出手時(shí)球離地面約
5
3
m
.鉛球落地點(diǎn)在B處,鉛球運(yùn)行中在運(yùn)動(dòng)員前4m處(即OC=4)達(dá)到最高點(diǎn),最高點(diǎn)高為3m.已知鉛球經(jīng)過(guò)的路線是拋物線,根據(jù)如圖所示的直角坐標(biāo)系,你能算出該運(yùn)動(dòng)員的成績(jī)嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)y=x2-2mx+4m-8
(1)當(dāng)x≤2時(shí),函數(shù)值y隨x的增大而減小,求m的取值范圍.
(2)以拋物線y=x2-2mx+4m-8的頂點(diǎn)A為一個(gè)頂點(diǎn)作該拋物線的內(nèi)接正三角形AMN(M,N兩點(diǎn)在拋物線上),請(qǐng)問(wèn):△AMN的面積是與m無(wú)關(guān)的定值嗎?若是,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.
(3)若拋物線y=x2-2mx+4m-8與x軸交點(diǎn)的橫坐標(biāo)均為整數(shù),求整數(shù)m的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

用一段長(zhǎng)為20米的籬笆圍成一個(gè)一邊靠墻的矩形菜園,墻長(zhǎng)為12米,這個(gè)矩形的長(zhǎng)寬各為多少時(shí),菜園的面積最大,最大面積是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案