【題目】如圖,△ABC為銳角三角形,AD是BC邊上的高,正方形EFGH的一邊FG在BC上,頂點(diǎn)E,H分別在AB、AC上,已知BC=40cm,AD=30cm.
(1)求證:△AEH∽△ABC;
(2)求這個(gè)正方形的邊長(zhǎng)與周長(zhǎng).
【答案】
(1)解:∵四邊形EFGH是正方形,
∴EH∥BC,
∴∠AEH=∠B,∠AHE=∠C,
∴△AEH∽△ABC
(2)解:如圖,設(shè)AD與EH交于點(diǎn)M,
∵∠EFD=∠FEM=∠FDM=90°,
∴四邊形EFDM是矩形,
∴EF=DM,
設(shè)正方形EFGH的邊長(zhǎng)為x,則DM=x,AM=30﹣x,
∵△AEH∽△ABC,
∴ = ,即 = ,
解得x= ,
∴正方形EFGH的邊長(zhǎng)為 cm,周長(zhǎng)為 cm.
【解析】(1)根據(jù)四邊形EFGH是正方形,得到EH∥BC,進(jìn)而得出∠AEH=∠B,∠AHE=∠C,即可判定△AEH∽△ABC;(2)設(shè)正方形EFGH的邊長(zhǎng)為x,則DM=x,AM=30﹣x,根據(jù)△AEH∽△ABC,得出 = ,即 = ,進(jìn)而解得x= ,即可得出正方形的邊長(zhǎng)與周長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某書(shū)店老板去批發(fā)市場(chǎng)購(gòu)買某種圖書(shū).第一次用1200元購(gòu)書(shū)若干本,并按該書(shū)定價(jià)20元出售,很快售完.由于該書(shū)暢銷,第二次購(gòu)書(shū)時(shí),每本書(shū)批發(fā)價(jià)比第一次提高了25%,他用1800元所購(gòu)該書(shū)數(shù)量比第一次多20本,又按定價(jià)售出全部圖書(shū).
(1)求該書(shū)原來(lái)每本的批發(fā)價(jià);
(2)該老板這兩次售書(shū)一共賺了多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:
小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如.善于思考的小明進(jìn)行了以下探索:
設(shè)(其中a、b、m、n均為整數(shù)),則有.
∴.這樣小明就找到了一種把類似的式子化為平方式的方法。
請(qǐng)你仿照小明的方法探索并解決下列問(wèn)題:(a,b,m,n均為正整數(shù))
(1),用含m、n的式子分別表示a、b,得:a=___,b=___;
(2)當(dāng)a=7,n=1時(shí),填空:7+ =( +)2
(3)若,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,∠ABC的平分線BE和∠BAC的外角平分線AD相交于點(diǎn)P,分別交AC和BC的延長(zhǎng)線于E,D.過(guò)P作PF⊥AD交AC的延長(zhǎng)線于點(diǎn)H,交BC的延長(zhǎng)線于點(diǎn)F,連接AF交DH于點(diǎn)G.則下列結(jié)論:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正確的是( 。
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠C=90°,BE,DF分別是∠ABC,∠ADC的平分線.
(1)∠1與∠2有什么關(guān)系,為什么?
(2)BE與DF有什么關(guān)系?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過(guò)格點(diǎn)A,B,C作一圓弧,點(diǎn)B與下列格點(diǎn)的連線中,能夠與該圓弧相切的是( )
A.點(diǎn)(0,3)
B.點(diǎn)(2,3)
C.點(diǎn)(5,1)
D.點(diǎn)(6,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明要測(cè)量河內(nèi)小島B到河邊公路AD的距離,在A點(diǎn)測(cè)得∠BAD=30°,在C點(diǎn)測(cè)得∠BCD=60°,又測(cè)得AC=50米,求小島B到公路AD的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(a,b),B(c,0),|a-3|+(2b-c)2+=0.
(1)求點(diǎn)A,B的坐標(biāo);
(2)如圖,點(diǎn)C為x軸正半軸上一點(diǎn),且OC=OA,點(diǎn)D為OC的中點(diǎn),連AC,AD,請(qǐng)?zhí)剿?/span>AD+CD與AC之間的大小關(guān)系,并說(shuō)明理由;
(3)如圖,過(guò)點(diǎn)A作AE⊥y軸于E,F(xiàn)為x軸負(fù)半軸上一動(dòng)點(diǎn)( 不與(-3,0)重合 ),G在EF延長(zhǎng)線上,以EG為一邊作∠GEN=45°,過(guò)A作AM⊥x軸,交EN于點(diǎn)M,連FM,當(dāng)點(diǎn)F在x軸負(fù)半軸上移動(dòng)時(shí),式子的值是否發(fā)生變化?若變化,求出變化的范圍;若不變化,請(qǐng)求出其值并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),是兩個(gè)全等的直角三角形(直角邊分別為a,b,斜邊為c).
(1)用這樣的兩個(gè)三角形構(gòu)造成如圖(2)的圖形(B,E,C三點(diǎn)在一條直線上),利用這個(gè)圖形,求證:.
(2)當(dāng)a=1,b=2時(shí),將其中一個(gè)直角三角形放入平面直角坐標(biāo)系中(如圖(3)),使直角頂點(diǎn)與原點(diǎn)重合,兩直角邊a,b分別與x軸、y軸重合.請(qǐng)?jiān)谧鴺?biāo)軸上找一點(diǎn)C,使△ABC為等腰三角形.
①寫出一個(gè)滿足條件的在x軸上的點(diǎn)的坐標(biāo): ;
②寫出一個(gè)滿足條件的在y軸上的點(diǎn)的坐標(biāo): ;
③滿足條件的在y軸上的點(diǎn)共有 個(gè).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com