已知一次函數(shù)的圖象經(jīng)過點(diǎn)M(-3,2),且平行于直線y=4x-1.
(1)求這個函數(shù)圖象的解析式;
(2)所求得的一次函數(shù)的圖象與坐標(biāo)軸圍成的三角形的面積.

解:(1)設(shè)所求一次函數(shù)的解析式為y=kx+b.
∵直線y=kx+b與直線y=4x-1平行,
∴k=4,
∵直線y=kx+b經(jīng)過點(diǎn)M(-3,2),又k=4,
∴4×(-3)+b=2,
解得,b=14,
所以這個函數(shù)的解析式為y=4x+14;

(2)設(shè)直線y=4x+14分別與x軸、y軸交于A、B點(diǎn),
令x=0,則y=14,B(0,14);
令y=0,4x+14=0,
解得x=-,A(-,0)
所以S△ABO=•OA•OB=××14=
分析:(1)根據(jù)平行直線的解析式的k值相等求出k值,然后把點(diǎn)的坐標(biāo)代入函數(shù)表達(dá)式進(jìn)行計算即可得解;
(2)求出與兩坐標(biāo)軸的交點(diǎn)坐標(biāo),然后利用三角形的面積公式列式計算即可得解.
點(diǎn)評:本題考查了兩直線平行的問題,根據(jù)平行直線的解析式的k值相等得到k=4是解題的關(guān)鍵,也是本題的難點(diǎn),還要注意求函數(shù)圖象與坐標(biāo)軸的交點(diǎn)的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某通信器材公司銷售一種市場需求較大的新型通訊產(chǎn)品.已知每件產(chǎn)品的進(jìn)價為40元,每年銷售該種產(chǎn)品的總開支(不含進(jìn)價)總計120萬元.在銷售過程中發(fā)現(xiàn),年銷售量y(萬件)與銷售單價x(元)之間存在著一次函數(shù)關(guān)系y=
1
20k
x+b
,其中整數(shù)k使式子
k+1
+
1-k
有意義.經(jīng)測算,銷售單價60元時,年銷售量為50000件.
(1)求出這個函數(shù)關(guān)系式;
(2)試寫出該公司銷售該種產(chǎn)品的年獲利z(萬元)關(guān)于銷售單價x(元)的函數(shù)關(guān)系式(年獲利=年銷售額-年銷售產(chǎn)品總進(jìn)價-年總開支).當(dāng)銷售單價x為何值時,年獲利最大并求這個最大值;
(3)若公司希望該種產(chǎn)品一年的銷售獲利不低于40萬元,借助(2)中函數(shù)的圖象,請你幫助該公司確定銷售單價的范圍.在此情況下,要使產(chǎn)品銷售量最大,你認(rèn)為銷售單價應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知一個正比例函數(shù)和一個一次函數(shù),它們的圖象都經(jīng)過點(diǎn)P(-3,3),且一次函數(shù)的圖象經(jīng)與y軸相交于點(diǎn)Q(0,-2),求這兩個函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知一個正比例函數(shù)和一個一次函數(shù),它們的圖象都經(jīng)過點(diǎn)P(-3,3),且一次函數(shù)的圖象經(jīng)與y軸相交于點(diǎn)Q(0,-2),求這兩個函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀,然后解決問題:

已知:一次函數(shù)和反比例函數(shù),求這兩個函數(shù)圖象在同一坐標(biāo)系內(nèi)的交點(diǎn)坐標(biāo)。

解:解方程-x+2=

   去分母,得

-x2+2x=-8

整理得

x2-2x-8=0

解這個方程得:x1=-2  x2=4

經(jīng)檢驗,x1=-2 x2=4是原方程的根

當(dāng)x1=-2,y1=4;x2=4,y2=-2

∴交點(diǎn)坐標(biāo)為(-2,4)和(4,-2)

問題:

1.在同一直角坐標(biāo)系內(nèi),求反比例函數(shù)y=的圖象與一次函數(shù)y=x+3的圖象的交點(diǎn)坐標(biāo);

2.判斷一次函數(shù)y=2x-3的圖象與反比例函數(shù)y=-的圖象在同一直角坐標(biāo)系內(nèi)有無交點(diǎn),說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省九年級上學(xué)期期中數(shù)學(xué)卷 題型:解答題

先閱讀,然后解決問題:

已知:一次函數(shù)和反比例函數(shù),求這兩個函數(shù)圖象在同一坐標(biāo)系內(nèi)的交點(diǎn)坐標(biāo)。

解:解方程-x+2=

   去分母,得

-x2+2x=-8

整理得

x2-2x-8=0

解這個方程得:x1=-2  x2=4

經(jīng)檢驗,x1=-2 x2=4是原方程的根

當(dāng)x1=-2,y1=4;x2=4,y2=-2

∴交點(diǎn)坐標(biāo)為(-2,4)和(4,-2)

問題:

1.在同一直角坐標(biāo)系內(nèi),求反比例函數(shù)y=的圖象與一次函數(shù)y=x+3的圖象的交點(diǎn)坐標(biāo);

2.判斷一次函數(shù)y=2x-3的圖象與反比例函數(shù)y=-的圖象在同一直角坐標(biāo)系內(nèi)有無交點(diǎn),說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案