【題目】如圖所示,在Rt△ABC中,∠B=90°,AC=100cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/s的速度向點(diǎn)A勻速運(yùn)動,同時點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/s的速度向點(diǎn)B勻速運(yùn)動,當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)D、E運(yùn)動的時間是t秒(0<t≤25).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.

(1)求證:四邊形AEFD是平行四邊形;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請說明理由;
(3)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.

【答案】
(1)證明:由題意得:AE=2t,CD=4t,

∵DF⊥BC,

∴∠CFD=90°,

∵∠C=30°,

∴DF= CD= ×4t=2t,

∴AE=DF;

∵DF⊥BC,

∴∠CFD=∠B=90°,

∴DF∥AE,

∴四邊形AEFD是平行四邊形


(2)證明:四邊形AEFD能夠成為菱形,理由是:

由(1)得:AE=DF,

∵∠DFC=∠B=90°,

∴AE∥DF,

∴四邊形AEFD為平行四邊形,

AEFD為菱形,則AE=AD,

∵AC=100,CD=4t,

∴AD=100﹣4t,

∴2t=100﹣4t,

t= ,

∴當(dāng)t= 時,四邊形AEFD能夠成為菱形;


(3)證明:分三種情況:

①當(dāng)∠EDF=90°時,如圖3,

則四邊形DFBE為矩形,

∴DF=BE=2t,

∵AB= AC=50,AE=2t,

∴2t=50﹣2t,

t= ,

②當(dāng)∠DEF=90°時,如圖4,

∵四邊形AEFD為平行四邊形,

∴EF∥AD,

∴∠ADE=∠DEF=90°,

在Rt△ADE中,∠A=60°,AE=2t,

∴AD=t,

∴AC=AD+CD,

則100=t+4t,

t=20,

③當(dāng)∠DFE=90°不成立;

綜上所述:當(dāng)t為 或20時,△DEF為直角三角形


【解析】(1)根據(jù)時間和速度表示出AE和CD的長,利用30°所對的直角邊等于斜邊的一半求出DF的長為4t,則AE=DF,再證明,AE∥DF即可解決問題.(2)根據(jù)(1)的結(jié)論可以證明四邊形AEFD為平行四邊形,如果四邊形AEFD能夠成為菱形,則必有鄰邊相等,則AE=AD,列方程求出即可;(3)當(dāng)△DEF為直角三角形時,有三種情況:①當(dāng)∠EDF=90°時,如圖3,②當(dāng)∠DEF=90°時,如圖4,③當(dāng)∠DFE=90°不成立;分別找一等量關(guān)系列方程可以求出t的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:(2+a)(2﹣a)+a(a﹣5b)+(3a5b3)÷(a2b)2 , 其中ab=﹣1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,我國兩艘海監(jiān)船,在南海海域巡航,某一時刻,兩船同時收到指令,立即前往救援遇險拋錨的漁船.此時,船在船的正南方向5海里處,船測得漁船在其南偏東方向,船測得漁船在其南偏東方向.已知船的航速為30海里/小時,船的航速為25海里/小時,問船至少要等待多長時間才能得到救援?(參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)

由于霧霾天氣頻發(fā),市場上防護(hù)口罩出現(xiàn)熱銷.某藥店準(zhǔn)備購進(jìn)一批口罩,已知1個A型口罩和3個B型口罩共需26元;3個A型口罩和2個B型口罩共需29元.

求一個A型口罩和一個B型口罩的售價各是多少元?

藥店準(zhǔn)備購進(jìn)這兩種型號的口罩共50個,其中A型口罩?jǐn)?shù)量不少于35個,且不多于B型口罩的3倍,有哪幾種購買方案,哪種方案最省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y關(guān)于x的一次函數(shù)y=(2m2﹣32)x3﹣(n﹣3)x2+(m﹣n)x+m+n.
(1)若該一次函數(shù)的y值隨x的值的增大而增大,求該一次函數(shù)的表達(dá)式,并在如圖所示的平面直角坐標(biāo)系中畫出該一次函數(shù)的圖象;

(2)若該一次函數(shù)的圖象經(jīng)過點(diǎn)(﹣2,13),求該函數(shù)的圖象與坐標(biāo)軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù)4,56,x的極差是5,則x=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖:在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為A(10,0)、C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC邊上運(yùn)動,當(dāng)△ODP是腰長為5的等腰三角形時,點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,AD=10,點(diǎn)E為DC邊上的一點(diǎn),將△ADE沿直線AE折疊,點(diǎn)D剛好落在BC邊上的點(diǎn)F處,則CE的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x2﹣(a1x+16是完全平方式,則a_____

查看答案和解析>>

同步練習(xí)冊答案