【題目】如圖,B、D、EF是直線 l上四點,在直線 l的同側(cè)作ABECDF,且 ABCD,∠A=40°.作BGAE G,FHCD HBG FH交于 P點.

1)如圖 1,BE、D、F從左至右順次排列,∠ABD=90°,求∠GPH;

2)如圖 2,B、ED、F從左至右順次排列,ABECDF均為銳角三角形,求∠GPH;

3)如圖 3,FB、E、D從左至右順次排列,ABE為銳角三角形,CDF為鈍角三角形,則∠GPH的度 數(shù)為多少?請畫出圖形并直接寫出結(jié)果,不需證明.

【答案】140°;(2140°;(340°.

【解析】

1)由題意可根據(jù)直角三角形兩銳角互余求出∠GPH=A=40°;

2)延長CDAE相交于點M,則PGMH為四邊形,因為BGAEGFHCDH,則∠PGE=PHD=90°,則∠P=360°-PGE°-PHD-M=360°-180°-M,又知ABCD,所以∠M=A=40°,則可以求得∠P的度數(shù);

3)根據(jù)題意可以作圖,延長ABFH相交于點M,因為ABCD,所以∠CHF=BMP=90°,則根據(jù)三角形內(nèi)角和定理可得∠GPH=A=40°

1)∵BGAE,

∴∠BGE=90°

∴∠GBE+GEB=90°

FHCD, ABCD,

ABBE,

∴∠ABE=90°

∴∠A+AEB=90°

∴∠GPH=GBE=A=40°;

2)如圖所示:

ABCD,

∴∠M=A=40°

延長CDAE相交于點M

則在四邊形PGMH中∠P=360°-180°-M=360°-A-180°=140°;

3)∠GPH=40°,圖如下邊所示:

延長ABFH相交于點M,

因為ABCD,

所以∠CHF=BMP=90°

PGAE,

∴∠BAG+ABG=90°,∠PBM+BPM=90°,

∵∠ABG=PBM,

∴∠BPM=A

即∠GPH=A=40°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,沿DE折疊長方形ABCD的一邊,使點C落在AB邊上的點F處,若AD=8,且AFD的面積為60,則DEC的面積為( 。

A.

B.

C. 18

D. 20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

小昊遇到這樣一個問題:如圖1,在ABC中,∠ACB=90°,BEAC邊上的中線,點DBC邊上,CD:BD=1:2,ADBE相交于點P,求的值.

小昊發(fā)現(xiàn),過點AAFBC,交BE的延長線于點F,通過構(gòu)造AEF,經(jīng)過推理和計算能夠使問題得到解決(如圖2).請回答的值為 

參考小昊思考問題的方法,解決問題:

如圖 3,在ABC中,∠ACB=90°,點DBC的延長線上,ADAC邊上的中線BE的延長線交于點P,DC:BC:AC=1:2:3 .

(1)求的值;

(2)若CD=2,則BP=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖菱形ABCD的頂點A,Bx軸上,A在點B的左側(cè),Dy軸的正半軸上,BAD=60°,A的坐標(biāo)為(-2,0).

(1)求線段AD所在直線的表達式;

(2)動點P從點A出發(fā),以每秒1個單位長度的速度,按照A→D→C→B→A的順序在菱形的邊上勻速運動一周,設(shè)運動時間為tt為何值時,以點P為圓心、以1為半徑的圓與對角線AC相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,平面直角坐標(biāo)系xOy中,四邊形OABC是矩形,點A,C的坐標(biāo)分別為(6,0),(0,2).點D是線段BC上的一個動點(點D與點B,C不重合),過點D作直線y=-x+b交折線OAB于點E.

(1)在點D運動的過程中,若ODE的面積為S,求Sb的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)如圖2,當(dāng)點E在線段OA上時,矩形OABC關(guān)于直線DE對稱的圖形為矩形OABC′,CB分別交CBOA于點D,MOA分別交CB,OA于點N,E.求證:四邊形DMEN是菱形;

(3)問題(2)中的四邊形DMEN中,ME的長為____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年“519(我要走)全國徒步日(江夏站)”暨第六屆“環(huán)江夏”徒步大會519日在美麗的花山腳下降重舉行.組委會(活動主辦方)為了獎勵活動中取得了好成績的參賽選手,計劃購買共100件的甲、乙兩種紀念品發(fā)放.其中甲種紀念品每件售價120元,乙種紀念品每件售價80.

1)如果購買甲、乙兩種紀念品一共花費了9600元,求購買甲、乙兩種紀念品各是多少件?

2)設(shè)購買甲種紀念品件,如果購買乙種紀念品的件數(shù)不超過甲種紀念品的數(shù)量的2倍,并且總費用不超過9400.問組委會購買甲、乙兩種紀念品共有幾種方案?哪一種方案所需總費用最少?最少總費用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】邊長為1的正的頂點在原點,點軸負半軸上,正方形邊長為2,點軸正半軸上,動點從點出發(fā),以每秒1個單位的速度沿著的邊按逆時針方向運動,動點點出發(fā),以每秒1個單位的速度沿著正方形的邊也按逆時針方向運動,點比點1秒出發(fā),則點運動2016秒后,則的值是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A(3,4),點B為直線x=1上的動點,設(shè)B(-1,y).

(1)如圖①,若△ABO是等腰三角形且AO=AB時,求點B的坐標(biāo);

(2)如圖②,若點Cx,0)且-1<x<3,BCAC垂足為點C;

①當(dāng)x=0時,求tan∠BAC的值;

②若ABy軸正半軸的所夾銳角為α,當(dāng)點C在什么位置時tanα的值最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC=8,BC=12,點DB出發(fā)以每秒2個單位的速度在線段BC上從過點B向點C運動,點E同時從點C出發(fā),以每秒2個單位的速度在線段AC上從點A運動,連接ADDE,設(shè)DE兩點運動時間為.

(1)運動_____秒時,CD=3AE.

(2)運動多少秒時,ABD≌△DCE能成立,并說明理由;

(3)ABDDCE,∠BAC=則∠ADE=_______(用含的式子表示)。

查看答案和解析>>

同步練習(xí)冊答案