分析 (1)根據(jù)等邊對(duì)等角得:∠ABC=∠ACB和∠OBC=∠OCB,再由等式的性質(zhì)將兩式相減可得結(jié)論;
(2)直接根據(jù)ASA證明△DOB≌△EOC可得結(jié)論.
解答 解:(1)∵AB=AC,
∴∠ABC=∠ACB,
∵OB=OC,
∴∠OBC=∠OCB,
∴∠ABC-∠OBC=∠ACB-∠OCB,
即∠ABE=∠ACD;
(2)在△DOB和△EOC中,
∵$\left\{\begin{array}{l}{∠ABE=∠ACD}\\{OB=OC}\\{∠DOB=∠EOC}\\{\;}\end{array}\right.$
∴△DOB≌△EOC,
∴DO=EO.
點(diǎn)評(píng) 本題考查了等腰三角形和全等三角形的性質(zhì)和判定,是?碱}型;要熟練掌握等邊對(duì)等角和等角對(duì)邊,并熟知全等的四種判定方法:SSS、SAS、AAS、ASA,在應(yīng)用全等三角形的判定時(shí),要注意三角形間的公共邊和公共角,必要時(shí)添加適當(dāng)輔助線構(gòu)造三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
50.5~60.5 | 16 | 0.08 |
60.5~70.5 | 40 | 0.2 |
70.5~80.5 | 50 | 0.25 |
80.5~90.5 | m | 0.35 |
90.5~100.5 | 24 | n |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | m-2n=1 | B. | m+2n=1 | C. | 2n-m=1 | D. | n-2m=1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 測(cè)量對(duì)角線是否相互垂直 | B. | 測(cè)量?jī)山M對(duì)邊是否分別相等 | ||
C. | 測(cè)量對(duì)角線是否相等 | D. | 測(cè)量其中三個(gè)角是否都為直角 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com