已知:如圖,平行四邊形ABCD中,E、F分別是邊AB、CD的中點.

(1)求證:四邊形EBFD是平行四邊形;
(2)若AD=AE=2,∠A=60°,求四邊形EBFD的周長.
(1)根據(jù)平行四邊形的性質可得AB=CD,AB∥CD,再由E、F分別是邊AB、CD的中點可證得BE=CF,從而可以證得結論;(2)8

試題分析:(1)根據(jù)平行四邊形的性質可得AB=CD,AB∥CD,再由E、F分別是邊AB、CD的中點可證得BE=CF,從而可以證得結論;
(2)由AD=AE,∠A=60°可證得△ADE是等邊三角形,即得DE=AD=2,再由(1)知四邊形EBFD是平行四邊形,根據(jù)平行四邊形的性質即可求得結果.
(1)在平行四邊形ABCD中,AB=CD,AB∥CD.
∵E、F是AB、CD中點,
∴BE=AB,DF=CD.
∴BE=CF.
∵EB∥DF,
∴四邊形EBFD是平行四邊形;
(2)∵AD=AE,∠A=60°,
∴△ADE是等邊三角形.
∴DE=AD=2,
又∵BE=AE=2,        
由(1)知四邊形EBFD是平行四邊形,
∴四邊形EBFD的周長=2(BE+DE)=8.
點評:平行四邊形的判定和性質是初中數(shù)學的重點,貫穿于整個初中數(shù)學的學習,是中考中比較常見的知識點,一般難度不大,需熟練掌握.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

圖①是一個長為2a,寬為2b的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖②的形狀拼成一個正方形.

(1)圖②中陰影部分的正方形的邊長是 _________ ;
(2)請用兩種不同的方法求圖2中陰影部分的面積:
方法1: _________ ;
方法2: _________;
(3)觀察圖②,請你寫出(a+b)2、(a﹣b)2、ab之間的等量關系是 _________;
(4)根據(jù)(3)中的等量關系解決如下問題:若m﹣n=﹣5,mn=3,則(m+n)2的值為多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,五邊形ABCDE是由五邊形FGHMN經過位似變換得到的,點是位似中心,F(xiàn)、G、H、M、N分別是OA、OB、OC、OD、OE的中點,則五邊形ABCDE與五邊形FGHMN的面積比是(   )

A.      B.      C.      D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD是平行四邊形,AB=2,以邊AB為直徑的⊙O經過點D,且∠DAB=45°.
 
(1)試判斷CD與⊙O的位置關系,并說明理由;
(2)若以C為圓心的⊙C與⊙O 相切,求⊙C的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,矩形ABCD中,點E,F(xiàn),G,H分別在邊AB,BC,CD,DA上,點P在矩形ABCD內.若AB=4cm,BC=6cm,AE=CG=3cm,BF=DH=4cm,四邊形AEPH的面積為5cm2,則四邊形PFCG的面積為(   )
 
A.5cm2B.6cm2C.7cm2D.8cm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,矩形ABCD,AB = 4,∠ACB = 30°.點E從點C出發(fā),沿折線CA—AD以每秒一個單位長度的速度運動,過點E作EF∥CD交BC于點F,同時過點E作EG⊥AC交直線BC于點G,設運動的時間為t,△EFG與△ABC重疊部分的面積為S,當點E運動到點D時停止運動.

(1)當點B與點G重合時,求此時t的值;
(2)直接寫出S與t之間的函數(shù)關系式和相應的自變量取值范圍;
(3)當t = 4時,將△EFG繞點E順時針旋轉一個角度),∠GEF的兩邊分別交矩形的邊于點M,點N.當△MEN為等腰三角形時,求此時△MEN的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

18如圖①,在梯形ABCD中,ADBC,∠A=60°,動點P從點A出發(fā),以1cm/s的速度沿著ABCD的方向不停移動,直到點P到達點D后才停止.已知△PAD的面積S(單位:cm2)與點P移動的時間(單位:s)的函數(shù)如圖②所示,則線段CD的長度為       cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,□ABCD的面積為6,E為BC中點,DE、AC交于F點,的面積為      

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在菱形ABCD中,BD為對角線,E、F分別是DC、DB的中點,若EF=3,則菱形ABCD
的周長是        

查看答案和解析>>

同步練習冊答案