18如圖①,在梯形ABCD中,ADBC,∠A=60°,動點P從點A出發(fā),以1cm/s的速度沿著ABCD的方向不停移動,直到點P到達點D后才停止.已知△PAD的面積S(單位:cm2)與點P移動的時間(單位:s)的函數(shù)如圖②所示,則線段CD的長度為       cm.

試題分析:動點P從點A出發(fā),以1cm/s的速度沿著A→B,由圖②知當P點在B點時候,△PAD的面積S==;在梯形ABCD中,AD∥BC,∠A=60°,由圖②知P點從A→B用了2秒,所以AB=2,h=AB=,即,AD=6;點P由B→C,由圖②知,所用時間為2秒,BC=2,所以AB="BC" ,在梯形ABCD中,AD∥BC,∠A=60°,所以;點P在C點時△PAD的面積S== ,即,解得CD=
點評:本題考查梯形,三角形,要求考生掌握梯形的性質,熟悉三角形的面積公式是本題的關鍵,本題難度中等
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,矩形ABCD中,AC與BD交于O點,AM∥BD,DM∥AC,AM、DM相交于點M,
求證:四邊形AODM是菱形

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

以邊長為的正方形的中心為端點,引兩條相互垂直的射線,分別與正方形的兩鄰邊交于、兩點,則線段的最小值是     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,平行四邊形ABCD中,E、F分別是邊AB、CD的中點.

(1)求證:四邊形EBFD是平行四邊形;
(2)若AD=AE=2,∠A=60°,求四邊形EBFD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知,△ABC為等邊三角形,點D為直線BC上一動點(點D不與B、C重合).以AD為邊作菱形ADEF,使∠DAF=60°,連接CF

(1)如圖1,當點D在邊BC上時,
①求證:∠ADB=∠AFC;②請直接判斷結論∠AFC=∠ACB+∠DAC是否成立;
(2)如圖2,當點D在邊BC的延長線上時,其他條件不變,結論∠AFC=∠ACB+∠DAC是否成立?若不成立,請寫出∠AFC、∠ACB、∠DAC之間存在的數(shù)量關系,并寫出證明過程;
(3)如圖3,當點D在邊CB的延長線上時,且點A、F分別在直線BC的異側,其他條件不變,請補全圖形,并直接寫出∠AFC、∠ACB、∠DAC之間存在的等量關系.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,等腰梯形 ABCD中,AB∥DC,BD平分∠ABC,∠DAB=60°,若梯形周長為40cm,則AD=      

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,矩形紙片ABCD中,已知AD=8,折疊紙片使AB邊與對角線AC重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為(     )
A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,正方形ABCD中,O是對角線AC、BD的交點,過點O作OE⊥OF,分別交AB、BC于E、F.

(1)求證:△OEF是等腰直角三角形.
(2)若AE=4,CF=3,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在□ABCD中,∠ABD的平分線BE交AD于點E,∠CDB的平分線DF交BC于點F,連接BD.

(1)求證:△ABE≌△CDF;
(2)若AB=DB,求證:四邊形DFBE是矩形.

查看答案和解析>>

同步練習冊答案