如圖,在半徑為5的⊙O中,如果弦AB的長為8,那么它的弦心距OC等于   
【答案】分析:連接OA,由垂徑定理求AC,利用勾股定理求OC.
解答:解:連接OA,
∵OC⊥AB,OA=5,
∴AC=AB=4,
在Rt△OAC中,OC===3.
故答案為:3.
點評:本題考查了垂徑定理及勾股定理的運用.關(guān)鍵是構(gòu)造直角三角形,利用勾股定理求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在半徑為R的圓中作一內(nèi)接△ABC,使BC邊上的高AD=h(定值),這樣的三角形可作出無數(shù)個,但AB•AC為定值,其值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在半徑為R的圓內(nèi)作一個內(nèi)接正方形,然后作這個正方形的內(nèi)切圓,又在這個內(nèi)切圓中作內(nèi)接正方形,依此作到第n個內(nèi)切圓,它的半徑是( 。
A、(
2
2
)
n
R
B、(
1
2
)
n
R
C、(
1
2
)
n-1
R
D、(
2
2
)
n-1
R

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在半徑為2的⊙O中,弦AB的長為2
3
,則∠AOB=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•陜西)如圖,在半徑為5的⊙O中,AB、CD是互相垂直的兩條弦,垂足為P,且AB=CD=8,則OP的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•上海模擬)如圖,在半徑為1的扇形AOB中,∠AOB=90°,點P是
AB
上的一個動點(不與點A、B重合),PC⊥OA,PD⊥OB,垂足分別為點C、D,點E、F、G、H分別是線段OD、PD、PC、OC的中點,EF與DG相交于點M,HG與EC相交于點N,聯(lián)結(jié)MN.如果設(shè)OC=x,MN=y,那么y關(guān)于x的函數(shù)解析式及函數(shù)定義域為
y=-
1
3
x2+
4
9
(o<x<1)
y=-
1
3
x2+
4
9
(o<x<1)

查看答案和解析>>

同步練習(xí)冊答案