【題目】如圖,在四邊形ABCD中,已知ABCD,MN、P分別是AD、BC、BD的中點(diǎn)∠ABD20°,∠BDC70°,則∠NMP的度數(shù)為(  )

A. 50° B. 25° C. 15° D. 20

【答案】B

【解析】

根據(jù)中位線定理和已知,易證明△PMN是等腰三角形,根據(jù)等腰三角形的性質(zhì)和已知條件即可求出∠PMN的度數(shù).

在四邊形ABCD中,∵M、N、P分別是AD、BC、BD的中點(diǎn),∴PNPM分別是△CDB與△DAB的中位線,∴PMABPNDC,PMABPNDC

AB=CD,∴PM=PN,∴△PMN是等腰三角形,∴∠PMN=PNM

PMABPNDC,∴∠MPD=ABD=20°,∠BPN=BDC=70°,∴∠MPN=MPD+NPD=20°+18070)°=130°,∴∠PMN25°.

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸, 軸分別交于點(diǎn)A、B,拋物線經(jīng)過(guò)點(diǎn)A和點(diǎn)B,與x軸的另一個(gè)交點(diǎn)為C,動(dòng)點(diǎn)D從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向O點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)E從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向A點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,0﹤t﹤5.

(1)求拋物線的解析式;

(2)當(dāng)t為何值時(shí),以A、D、E為頂點(diǎn)的三角形與△AOB相似;

(3)當(dāng)△ADE為等腰三角形時(shí),求t的值;

(4)拋物線上是否存在一點(diǎn)F,使得以A、B、D、F為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出F點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)(x>0,0<m<n)的圖象上,對(duì)角線BD//y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為4.

(1)當(dāng)m=4,n=20時(shí).

①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.

②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說(shuō)明理由.

(2)四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形ABCD中,PCD邊上一點(diǎn)(DP<CP),APB=90°.將ADP沿AP翻折得到AD′P,PD′的延長(zhǎng)線交邊AB于點(diǎn)M,過(guò)點(diǎn)BBNMPDC于點(diǎn)N.

(1)求證:AD2=DPPC;

(2)請(qǐng)判斷四邊形PMBN的形狀,并說(shuō)明理由;

(3)如圖2,連接AC,分別交PM,PB于點(diǎn)E,F(xiàn).若=,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C90°,以AC為直徑作O,交ABD

(1)在圖(1)中,用直尺和圓規(guī)過(guò)點(diǎn)DO的切線DEBC于點(diǎn)E;(保留作圖痕跡,不寫作法)

(2)如圖(2),如果O的半徑為3,ED4,延長(zhǎng)EOOF,連接DF,與OA交于點(diǎn)G,求OG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)的經(jīng)典著作,書中有一個(gè)問(wèn)題:“今有黃金九枚,白銀一十一枚,稱之重適等,交易其一,金輕十三兩,問(wèn)金、銀一枚各重幾何?”意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相同,兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計(jì)),問(wèn)黃金、白銀每枚各種多少兩?設(shè)黃金重兩,每枚白銀重兩,根據(jù)題意可列方程組為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C90°,∠B30°,BC3,點(diǎn)DBC邊上一動(dòng)點(diǎn)(不與B,C重合),過(guò)點(diǎn)DDEBCAB于點(diǎn)E,將∠B沿著直線DE翻折,點(diǎn)B落在BC邊上的點(diǎn)F處,若∠AFE90°,則BD的長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PB為⊙O的切線,B為切點(diǎn),過(guò)BOP的垂線BA,垂足為C,交⊙O于點(diǎn)A,連接PA、AO,并延長(zhǎng)AO交⊙O于點(diǎn)E,與PB的延長(zhǎng)線交于點(diǎn)D

1)求證:PA是⊙O的切線;(2)若AC6,OC4,求PA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分10分)如圖,在Rt△ABC中,∠ABC=90°AC的垂直平分線分別與AC,BCAB的延長(zhǎng)線相交于點(diǎn)DE,F,且BF=BC⊙O△BEF的外接圓,∠EBF的平分線交EF于點(diǎn)G,交于點(diǎn)H,連接BD、FH

1)求證:△ABC≌△EBF;

2)試判斷BD⊙O的位置關(guān)系,并說(shuō)明理由;

3)若AB=1,求HGHB的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案