科目:初中數(shù)學 來源: 題型:
3 | 4 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖1,中,,,點在線段上運動,點、分別在線段、上,且使得四邊形是矩形.設的長為,矩形的面積為,已知是的函數(shù),其圖象是過點(12,36)的拋物線的一部分(如圖2所示).
(1)求的長;
(2)當為何值時,矩形的面積最大,并求出最大值.
為了解決這個問題,孔明和研究性學習小組的同學作了如下討論:
張明:圖2中的拋物線過點(12,36)在圖1中表示什么呢?
李明:因為拋物線上的點是表示圖1中的長與矩形面積的對應關系,那么,(12,36)表示當時,的長與矩形面積的對應關系.
趙明:對,我知道縱坐標36是什么意思了!
孔明:哦,這樣就可以算出,這個問題就可以解決了.
請根據上述對話,幫他們解答這個問題.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學 來源:2013屆江蘇省南京市鼓樓區(qū)中考二模數(shù)學試卷(帶解析) 題型:解答題
【提出問題】
如圖①,在梯形ABCD中,AD//BC,AC、BD交于點E,∠BEC=n°,若AD=a,BC=b,則梯形ABCD的面積最大是多少?
【探究過程】
小明提出:可以從特殊情況開始探究,如圖②,在梯形ABCD中,AD//BC,AC⊥BD,若AD=3,BC=7,則梯形ABCD的面積最大是多少?
如圖③,過點D做DE//AC交BC的延長線于點E,那么梯形ABCD的面積就等于△DBE的面積,求梯形ABCD的面積最大值就是求△DBE的面積最大值.如果設AC=x,BD=y(tǒng),那么S△DBE=xy.
以下是幾位同學的對話:
A同學:因為y=,所以S△DBE=x,求這個函數(shù)的最大值即可.
B同學:我們知道x2+y2=100,借助完全平方公式可求S△DBE=xy的最大值
C同學:△DBE是直角三角形,底BE=10,只要高最大,S△DBE就最大,我們先將所有滿足BE=10的直角△DBE都找出來,然后在其中尋找高最大的△DBE即可.
(1)請選擇A同學或者B同學的方法,完成解題過程.
(2)請幫C同學在圖③中畫出所有滿足條件的點D,并標出使△DBE面積最大的點D1.(保留作圖痕跡,可適當說明畫圖過程)
【解決問題】
根據對特殊情況的探究經驗,請在圖①中畫出面積最大的梯形ABCD的頂點D1,并直接寫出梯形ABCD面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源:2012-2013學年江蘇省南京市鼓樓區(qū)中考二模數(shù)學試卷(解析版) 題型:解答題
【提出問題】
如圖①,在梯形ABCD中,AD//BC,AC、BD交于點E,∠BEC=n°,若AD=a,BC=b,則梯形ABCD的面積最大是多少?
【探究過程】
小明提出:可以從特殊情況開始探究,如圖②,在梯形ABCD中,AD//BC,AC⊥BD,若AD=3,BC=7,則梯形ABCD的面積最大是多少?
如圖③,過點D做DE//AC交BC的延長線于點E,那么梯形ABCD的面積就等于△DBE的面積,求梯形ABCD的面積最大值就是求△DBE的面積最大值.如果設AC=x,BD=y(tǒng),那么S△DBE=xy.
以下是幾位同學的對話:
A同學:因為y=,所以S△DBE=x,求這個函數(shù)的最大值即可.
B同學:我們知道x2+y2=100,借助完全平方公式可求S△DBE=xy的最大值
C同學:△DBE是直角三角形,底BE=10,只要高最大,S△DBE就最大,我們先將所有滿足BE=10的直角△DBE都找出來,然后在其中尋找高最大的△DBE即可.
(1)請選擇A同學或者B同學的方法,完成解題過程.
(2)請幫C同學在圖③中畫出所有滿足條件的點D,并標出使△DBE面積最大的點D1.(保留作圖痕跡,可適當說明畫圖過程)
【解決問題】
根據對特殊情況的探究經驗,請在圖①中畫出面積最大的梯形ABCD的頂點D1,并直接寫出梯形ABCD面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com