根據如圖對話,可以求得小紅所買的筆和筆記本的價格分別是多少

解:設小紅所買的筆和筆記本的價格分別是x元,y元,則
,
解得
答:小紅所買的筆的價格是1.2元,筆記本的價格是3.6元.
分析:設小紅所買的筆和筆記本的價格分別是x元,y元,分別根據第一次花了42元,第二次花了30元,兩個等量關系聯(lián)立方程組求解即可.
點評:此題主要考查了二元一次方程組的應用,解題關鍵是要讀懂題目的意思,根據題目給出的條件,找出合適的等量關系,列出方程組,再求解.利用二元一次方程組求解的應用題一般情況下題中要給出2個等量關系,準確的找到等量關系并用方程組表示出來是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖1,Rt△ABC中,∠A=90°,tanB=
34
,點P在線段AB上運動,點Q、R分別在線段BC、AC上,且使得四邊形APQR是矩形.設AP的長為x,矩形APQR的面積為y,已知y是x的函數(shù),其圖象是過點(12,36)的拋物線的一部分(如圖2所示).
精英家教網
(1)求AB的長;
(2)當AP為何值時,矩形APQR的面積最大,并求出最大值.
為了解決這個問題,孔明和研究性學習小組的同學作了如下討論:
張明:圖2中的拋物線過點(12,36)在圖1中表示什么呢?
李明:因為拋物線上的點(x,y)是表示圖1中AP的長與矩形APQR面積的對應關系,那么,(12,36)表示當AP=12時,AP的長與矩形APQR面積的對應關系.
趙明:對,我知道縱坐標36是什么意思了!
孔明:哦,這樣就可以算出AB,這個問題就可以解決了.請根據上述對話,幫他們解答這個問題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,中,,,點在線段上運動,點、分別在線段、上,且使得四邊形是矩形.設的長為,矩形的面積為,已知的函數(shù),其圖象是過點(12,36)的拋物線的一部分(如圖2所示).

(1)求的長;

(2)當為何值時,矩形的面積最大,并求出最大值.

為了解決這個問題,孔明和研究性學習小組的同學作了如下討論:

張明:圖2中的拋物線過點(12,36)在圖1中表示什么呢?

李明:因為拋物線上的點是表示圖1中的長與矩形面積的對應關系,那么,(12,36)表示當時,的長與矩形面積的對應關系.

趙明:對,我知道縱坐標36是什么意思了!

孔明:哦,這樣就可以算出,這個問題就可以解決了.

    請根據上述對話,幫他們解答這個問題.


圖1                                                                              圖2

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆江蘇省南京市鼓樓區(qū)中考二模數(shù)學試卷(帶解析) 題型:解答題

【提出問題】
如圖①,在梯形ABCD中,AD//BC,AC、BD交于點E,∠BEC=n°,若AD=a,BC=b,則梯形ABCD的面積最大是多少?
【探究過程】
小明提出:可以從特殊情況開始探究,如圖②,在梯形ABCD中,AD//BC,AC⊥BD,若AD=3,BC=7,則梯形ABCD的面積最大是多少?
如圖③,過點D做DE//AC交BC的延長線于點E,那么梯形ABCD的面積就等于△DBE的面積,求梯形ABCD的面積最大值就是求△DBE的面積最大值.如果設AC=x,BD=y(tǒng),那么S△DBE=xy.
以下是幾位同學的對話:
A同學:因為y=,所以S△DBE=x,求這個函數(shù)的最大值即可.
B同學:我們知道x2+y2=100,借助完全平方公式可求S△DBE=xy的最大值
C同學:△DBE是直角三角形,底BE=10,只要高最大,S△DBE就最大,我們先將所有滿足BE=10的直角△DBE都找出來,然后在其中尋找高最大的△DBE即可.

(1)請選擇A同學或者B同學的方法,完成解題過程.
(2)請幫C同學在圖③中畫出所有滿足條件的點D,并標出使△DBE面積最大的點D1.(保留作圖痕跡,可適當說明畫圖過程)
【解決問題】
根據對特殊情況的探究經驗,請在圖①中畫出面積最大的梯形ABCD的頂點D1,并直接寫出梯形ABCD面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年江蘇省南京市鼓樓區(qū)中考二模數(shù)學試卷(解析版) 題型:解答題

【提出問題】

如圖①,在梯形ABCD中,AD//BC,AC、BD交于點E,∠BEC=n°,若AD=a,BC=b,則梯形ABCD的面積最大是多少?

【探究過程】

小明提出:可以從特殊情況開始探究,如圖②,在梯形ABCD中,AD//BC,AC⊥BD,若AD=3,BC=7,則梯形ABCD的面積最大是多少?

如圖③,過點D做DE//AC交BC的延長線于點E,那么梯形ABCD的面積就等于△DBE的面積,求梯形ABCD的面積最大值就是求△DBE的面積最大值.如果設AC=x,BD=y(tǒng),那么S△DBE=xy.

以下是幾位同學的對話:

A同學:因為y=,所以S△DBE=x,求這個函數(shù)的最大值即可.

B同學:我們知道x2+y2=100,借助完全平方公式可求S△DBE=xy的最大值

C同學:△DBE是直角三角形,底BE=10,只要高最大,S△DBE就最大,我們先將所有滿足BE=10的直角△DBE都找出來,然后在其中尋找高最大的△DBE即可.

(1)請選擇A同學或者B同學的方法,完成解題過程.

(2)請幫C同學在圖③中畫出所有滿足條件的點D,并標出使△DBE面積最大的點D1.(保留作圖痕跡,可適當說明畫圖過程)

【解決問題】

根據對特殊情況的探究經驗,請在圖①中畫出面積最大的梯形ABCD的頂點D1,并直接寫出梯形ABCD面積的最大值.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖1,Rt△ABC中,∠A=90°,tanB=數(shù)學公式,點P在線段AB上運動,點Q、R分別在線段BC、AC上,且使得四邊形APQR是矩形.設AP的長為x,矩形APQR的面積為y,已知y是x的函數(shù),其圖象是過點(12,36)的拋物線的一部分(如圖2所示).
作業(yè)寶
(1)求AB的長;
(2)當AP為何值時,矩形APQR的面積最大,并求出最大值.
為了解決這個問題,孔明和研究性學習小組的同學作了如下討論:
張明:圖2中的拋物線過點(12,36)在圖1中表示什么呢?
李明:因為拋物線上的點(x,y)是表示圖1中AP的長與矩形APQR面積的對應關系,那么,(12,36)表示當AP=12時,AP的長與矩形APQR面積的對應關系.
趙明:對,我知道縱坐標36是什么意思了!
孔明:哦,這樣就可以算出AB,這個問題就可以解決了.請根據上述對話,幫他們解答這個問題.

查看答案和解析>>

同步練習冊答案