分析 (1)仿照例子,設(shè)x=1+6+62+63+…+6100,則可得出6x=6+62+63+…+6101,兩者做差除以5即可得出結(jié)論x=$\frac{{6}^{101}-1}{5}$;
(2)仿照例子,設(shè)x=$\frac{1}{{2}^{1}}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{99}}$+$\frac{1}{{2}^{100}}$,則可得出$\frac{1}{2}$x=$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{100}}$+$\frac{1}{{2}^{101}}$,兩者做差除以$\frac{1}{2}$即可得出結(jié)論x=1-$\frac{1}{{2}^{100}}$.
解答 解:(1)設(shè)x=1+6+62+63+…+6100,
則有6x=6(1+6+62+63+…+6100),
即6x=6+62+63+…+6101,
作簡(jiǎn)單的變形:6x-x=6+62+63+…+6101-(1+6+62+63+…+6100),
則x=$\frac{{6}^{101}-1}{5}$.
(2)設(shè)x=$\frac{1}{{2}^{1}}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{99}}$+$\frac{1}{{2}^{100}}$,
則有$\frac{1}{2}$x=$\frac{1}{2}$($\frac{1}{{2}^{1}}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{99}}$+$\frac{1}{{2}^{100}}$),
即$\frac{1}{2}$x=$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{100}}$+$\frac{1}{{2}^{101}}$,
作簡(jiǎn)單的變形:x-$\frac{1}{2}$x=$\frac{1}{{2}^{1}}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{99}}$+$\frac{1}{{2}^{100}}$-($\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{100}}$+$\frac{1}{{2}^{101}}$),
則x=1-$\frac{1}{{2}^{100}}$.
點(diǎn)評(píng) 本題考查了規(guī)律型中的數(shù)字的變化類,解題的關(guān)鍵是(1)仿照例子計(jì)算1+6+62+63+…+6100;(2)仿照例子計(jì)算$\frac{1}{{2}^{1}}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{99}}$+$\frac{1}{{2}^{100}}$.本題屬于基礎(chǔ)題,難度不大,本題其實(shí)是等比數(shù)列的求和公式,但初中未接觸過該方面的知識(shí),需要借助于錯(cuò)位相減法來求出結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | 3 | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com