直線與x軸、y軸分別交于點A和B,M為OB上一點,若得△ABM沿直線AM折疊,點B恰好落在x軸上的處,求直線AM的函數(shù)表達式,

答案:
解析:

解:如圖所示

當(dāng)x=0時,y=8,B(08),

當(dāng)x=0時,x=6,A(60),

因點My軸上,所以點M的坐標(biāo)為(0a),則OM=a,BM=8a,

,

又∵OA=6,∴

中,

又∵,∴

,a=3

M的坐標(biāo)為(03),

設(shè)直線AM的表達式為y=kxb

∵直線AM的經(jīng)過(6,0)(0,3),

b=3

∴直線AM的函數(shù)表達式為


提示:

本題考查怎樣求直線與兩坐標(biāo)軸的交點,結(jié)合軸對稱性求出點M的坐標(biāo),進而求出直線AM的函數(shù)表達式.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,O是原點.點P(x,y)且x+y=8,點A的坐標(biāo)為(6,0),設(shè)△OPA的面積為S.
(1)用含x的解析式表示S,寫出x的取值范圍.
(2)若點P在第一象限內(nèi),當(dāng)點P所在的直線與X軸,Y軸分別相交于點B和C,且滿足△BAP∽△CPO,求此時△OPA的面積.
(3)是否存在點P,使△OPA是等腰三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線與x軸、y軸分別交于A、B兩點.
(1)將直線AB繞原點O沿逆時針方向旋轉(zhuǎn)90°得到直線A1B1
請在《答題卡》所給的圖中畫出直線A1B1,此時直線AB與A1B1的位置關(guān)系為
 
(填“平行”或“垂直”);
(2)設(shè)(1)中的直線AB的函數(shù)表達式為y1=k1x+b1,直線A1B1的函數(shù)表達式為y2=k2x+b2,則k1•k2=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
k
x
(k≠0)
的圖象經(jīng)過點(
1
2
,8),直線y=-x+b經(jīng)過該反比例函數(shù)圖象上的點Q(4,m).
(1)求上述反比例函數(shù)和直線的函數(shù)表達式;
(2)設(shè)該直線與x軸、y軸分別相交于A、B兩點,與反比例函數(shù)圖象的另一個交點為P,連接0P、OQ,求△OPQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線與x軸、y軸分別交于A、B兩點.
(1)將直線AB繞原點O沿逆時針方向旋轉(zhuǎn)90°得到直線A1B1.請在《答題卡》所給的圖中畫出直線A1B1,此時直線AB與A1B1的位置關(guān)系為
垂直
垂直
(填“平行”或“垂直”)
(2)設(shè)(1)中的直線AB的函數(shù)表達式為y1=k1x+b1,直線A1B1的函數(shù)表達式為y2=k2x+b2,則k1•k2=
-1
-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知直線與x軸、y軸分別交于A、B兩點,并且與反比例函數(shù)y=
mx
(m≠0)
的圖象在第一象限交于C點,CD垂直于x軸,垂足是D,若OA=OB=OD=1;
(1)求:點A、B、C、D的坐標(biāo);
(2)求反比例函數(shù)的解析式;
(3)求△AOC的周長和面積.

查看答案和解析>>

同步練習(xí)冊答案