【題目】如圖,在△ABC中,D,E分別是AB,AC的中點(diǎn),BE=2DE,延長(zhǎng)DE到點(diǎn)F,使得EF=BE,連接CF.

(1)求證:四邊形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.

【答案】
(1)證明:∵D、E分別是AB、AC的中點(diǎn),
∴DE是△ABC的中位線,

∴DE∥BC且2DE=BC,

又∵BE=2DE,EF=BE,

∴EF=BC,EF∥BC,

∴四邊形BCFE是平行四邊形,

又∵BE=FE,

∴四邊形BCFE是菱形


(2)解:∵∠BCF=120°,

∴∠EBC=60°,

∴△EBC是等邊三角形,

∴菱形的邊長(zhǎng)為4,高為2 ,

∴菱形的面積為4×2 =8


【解析】(1)由已知D,E分別是AB,AC的中點(diǎn),得到DE是△ABC的中位線,根據(jù)中位線定理,得到DE∥BC且2DE=BC,再根據(jù)一組鄰邊相等的平行四邊形是是菱形,即可得證。
(2)根據(jù)已知易證得△EBC是等邊三角形,就可求出此菱形的邊長(zhǎng),再根據(jù)勾股定理求出菱形的高,即可求出菱形的面積。也可以連接BF,求出BF的長(zhǎng),根據(jù)菱形的面積等于兩對(duì)角線之積的一半。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識(shí),掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對(duì)三角形中位線定理的理解,了解連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果商從批發(fā)市場(chǎng)用8000元購(gòu)進(jìn)了大櫻桃和小櫻桃各200千克,大櫻桃的進(jìn)價(jià)比小櫻桃的進(jìn)價(jià)每千克多20元.大櫻桃售價(jià)為每千克40元,小櫻桃售價(jià)為每千克16元.

(1)大櫻桃和小櫻桃的進(jìn)價(jià)分別是每千克多少元?銷售完后,該水果商共賺了多少元錢(qián)?

(2)該水果商第二次仍用8000元錢(qián)從批發(fā)市場(chǎng)購(gòu)進(jìn)了大櫻桃和小櫻桃各200千克,進(jìn)價(jià)不變,但在運(yùn)輸過(guò)程中小櫻桃損耗了20%.若小櫻桃的售價(jià)不變,要想讓第二次賺的錢(qián)不少于第一次所賺錢(qián)的90%,大櫻桃的售價(jià)最少應(yīng)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P為定角∠AOB的平分線上的一個(gè)定點(diǎn),且∠MPN∠AOB互補(bǔ),若∠MPN在繞點(diǎn)P旋轉(zhuǎn)的過(guò)程中,其兩邊分別與OA、OB相交于M、N兩點(diǎn),則以下結(jié)論:(1PM=PN恒成立;(2OM+ON的值不變;(3)四邊形PMON的面積不變;(4MN的長(zhǎng)不變,其中正確的個(gè)數(shù)為(  )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)尺規(guī)作圖:如圖,過(guò)A點(diǎn)作直線l的垂線AB,垂足為B點(diǎn)(保留作圖痕跡);

2)根據(jù)作圖的方法,結(jié)合圖形,寫(xiě)出已知,并證明.

已知:如圖,

求證: ABl

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在長(zhǎng)方形ABCD中, AB=CD=4cm,BC=3cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),先以1cm/s的速度沿AB,然后以2cm/s的速度沿BC運(yùn)動(dòng),到C點(diǎn)停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,是否存在這樣的t,使得BPD的面積S>3cm2?如果能,請(qǐng)求出t的取值范圍;如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了提高中學(xué)生身體素質(zhì),學(xué)校開(kāi)設(shè)了A:籃球、B:足球、C:跳繩、D:羽毛球四種體育活動(dòng),為了解學(xué)生對(duì)這四種體育活動(dòng)的喜歡情況,在全校隨機(jī)抽取若干名學(xué)生進(jìn)行問(wèn)卷調(diào)查(每個(gè)被調(diào)查的對(duì)象必須選擇而且只能在四種體育活動(dòng)中選擇一種),將數(shù)據(jù)進(jìn)行整理并繪制成以下兩幅統(tǒng)計(jì)圖(未畫(huà)完整).

(1)這次調(diào)查中,一共調(diào)查了名學(xué)生;
(2)請(qǐng)補(bǔ)全兩幅統(tǒng)計(jì)圖;
(3)若有3名喜歡跳繩的學(xué)生,1名喜歡足球的學(xué)生組隊(duì)外出參加一次聯(lián)誼活動(dòng),欲從中選出2人擔(dān)任組長(zhǎng)(不分正副),求一人是喜歡跳繩、一人是喜歡足球的學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)ab>0時(shí),y=ax2與y=ax+b的圖象大致是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直角坐標(biāo)系中一條圓弧經(jīng)過(guò)正方形網(wǎng)格的格點(diǎn)A,B,C.

(1)用直尺畫(huà)出該圓弧所在圓的圓心M的位置;
(2)若A點(diǎn)的坐標(biāo)為(0,4),D點(diǎn)的坐標(biāo)為(7,0),試驗(yàn)證點(diǎn)D是否在經(jīng)過(guò)點(diǎn)A,B,C的拋物線上;
(3)在(2)的條件下,求證:直線CD是⊙M的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ADBCAD5,BC18EBC的中點(diǎn).點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)A出發(fā),沿AD向點(diǎn)D運(yùn)動(dòng);點(diǎn)Q同時(shí)以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B運(yùn)動(dòng).點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也隨之停止運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)時(shí)間t秒時(shí),以點(diǎn)P,Q,ED為頂點(diǎn)的四邊形是平行四邊形,則t的值為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案