如圖所示,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長為2cm,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A、B,且12a+5c=0.
(1)求拋物線的解析式;
(2)如果點(diǎn)P由點(diǎn)A開始沿AB邊以2cm/s的速度向點(diǎn)B移動(dòng),同時(shí)點(diǎn)Q由點(diǎn)B開始沿BC邊以1cm/s的速度向點(diǎn)C移動(dòng).
①移動(dòng)開始后第t秒時(shí),設(shè)S=PQ2(cm2),試寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
②當(dāng)S取得最小值時(shí),在拋物線上是否存在點(diǎn)R,使得以P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出R點(diǎn)的坐標(biāo);如果不存在,請說明理由.
(1)據(jù)題意知:A(0,-2),B(2,-2)
∵A點(diǎn)在拋物線上,
∴c=-2
∵12a+5c=0,
∴a=
5
6
(1分)
由AB=2知拋物線的對稱軸為:x=1
即:-
b
2a
=1,b=-
5
3

∴拋物線的解析式為:y=
5
6
x2-
5
3
x-2.(3分)

(2)①由圖象知:PB=2-2t,BQ=t,
∴S=PQ2=PB2+BQ2=(2-2t)2+t2(4分)
即S=5t2-8t+4(0≤t≤1).(5分)
②假設(shè)存在點(diǎn)R,可構(gòu)成以P、B、R、Q為頂點(diǎn)的平行四邊形,
∵S=5t2-8t+4(0≤t≤1),
∴S=5(t-
4
5
2+
4
5
(0≤t≤1),
∴當(dāng)t=
4
5
時(shí),S取得最小值
4
5
.(6分)
這時(shí)PB=2-
8
5
=0.4,BQ=0.8,P(1.6,-2),Q(2,-1.2).(7分)
分情況討論:
(A)假設(shè)R在BQ的右邊,這時(shí)QR=PB,則:
R的橫坐標(biāo)為2.4,R的縱坐標(biāo)為-1.2,即(2.4,-1.2),
代入y=
5
6
x2-
5
3
x-2,左右兩邊相等,
∴這時(shí)存在R(2.4,-1.2)滿足題意.(8分)
(B)假設(shè)R在BQ的左邊,這時(shí)PR=QB,
則:R的橫坐標(biāo)為1.6,縱坐標(biāo)為-1.2,即(1.6,-1.2)
代入y=
5
6
x2-
5
3
x-2,左右兩邊不相等,R不在拋物線上.(9分)
(C)假設(shè)R在PB的下方,這時(shí)PR=QB,
則:R(1.6,-2.8)代入y=
5
6
x2-
5
3
x-2,左右不相等,R不在拋物線上.
綜上所述,存在一點(diǎn)R(2.4,-1.2)滿足題意.(10分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2上的點(diǎn)D、C與x軸上的點(diǎn)A(-6,0)、B(4,0)構(gòu)成平行四邊形ABCD,CD與y軸交于點(diǎn)E(0,6),求a的值及直線BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,將拋物線C1:y=x2+3先向右平移1個(gè)單位,再向下平移7個(gè)單位得到拋物線C2.C2的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求拋物線C2的解析式;
(2)若拋物線C2的對稱軸與x軸交于點(diǎn)C,與拋物線C2交于點(diǎn)D,與拋物線C1交于點(diǎn)E,連結(jié)AD、DB、BE、EA,請證明四邊形ADBE是菱形,并計(jì)算它的面積;
(3)若點(diǎn)F為對稱軸DE上任意一點(diǎn),在拋物線C2上是否存在這樣的點(diǎn)G,使以O(shè)、B、F、G四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,請求出點(diǎn)G的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=-
1
2
x2+bx+4
上有不同的兩點(diǎn)E(k+3,-k2+1)和F(-k-1,-k2+1).
(1)求拋物線的解析式;
(2)如圖,拋物線y=-
1
2
x2+bx+4
與x軸和y軸的正半軸分別交于點(diǎn)A和B,M為AB的中點(diǎn),∠PMQ在AB的同側(cè)以M為中心旋轉(zhuǎn),且∠PMQ=45°,MP交y軸于點(diǎn)C,MQ交x軸于點(diǎn)D.設(shè)AD的長為m(m>0),BC的長為n,求n和m之間的函數(shù)關(guān)系式;
(3)當(dāng)m,n為何值時(shí),∠PMQ的邊過點(diǎn)F?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有一種計(jì)算機(jī)控制的線切割機(jī)床,它可以自動(dòng)切割只有直線和拋物線組成的零件,工作時(shí)只要先確定零件上各點(diǎn)的坐標(biāo)及線段與拋物線的關(guān)系式作為程序輸入計(jì)算機(jī)即可.今有如圖所示的零件需按A?B?C?D?A的路徑切割,請按下表將程序編完整.
線段或拋物線起始坐標(biāo)關(guān)系式終點(diǎn)坐標(biāo)
拋物線APB
線段BC(1,0)x=1(1,-1)
線段CD(1,-1)
線段AD(1,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=-x2+mx+3與x軸的一個(gè)交點(diǎn)A(3,0).
(1)你一定能分別求出這條拋物線與x軸的另一個(gè)交點(diǎn)B及與y軸的交點(diǎn)C的坐標(biāo),試試看;
(2)設(shè)拋物線的頂點(diǎn)為D,請?jiān)趫D中畫出拋物線的草圖.若點(diǎn)E(-2,n)在直線BC上,試判斷E點(diǎn)是否在經(jīng)過D點(diǎn)的反比例函數(shù)的圖象上,把你的判斷過程寫出來;
(3)請?jiān)O(shè)法求出tan∠DAC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,以O(shè)為原點(diǎn)的直角坐標(biāo)系中,A點(diǎn)的坐標(biāo)為(0,3),直線x=-3交x軸于點(diǎn)B,P為線段AB上一動(dòng)點(diǎn),作直線PC⊥PO,交于直線x=-3于點(diǎn)C.過P點(diǎn)作直線MN平行于x軸,交y軸于M,交直線x=-3于點(diǎn)N.
(1)當(dāng)點(diǎn)C在第二象限時(shí),求證:△OPM≌△PCN;
(2)設(shè)AP長為m,以P、O、B、C為頂點(diǎn)的四邊形的面積為S,請求出S與M之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)當(dāng)點(diǎn)P在線段AB上移動(dòng)時(shí),點(diǎn)C也隨之在直線x=-3上移動(dòng),△PBC是否可能成為等腰三角形?如果可能,求出所有能使△PBC成為等腰三角形的點(diǎn)P的坐標(biāo);如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

廊橋是我國古老的文化遺產(chǎn).如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達(dá)式為y=-
1
40
x2+10,為保護(hù)廊橋的安全,在該拋物線上距水面AB高為8米的點(diǎn)E,F(xiàn)處要安裝兩盞警示燈,則這兩盞燈的水平距離EF是______米.(精確到1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某租憑公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時(shí),可全部租出.當(dāng)每輛車的月租金每增加50元時(shí),未租出的車將會(huì)增加1輛.租出的車每月需維護(hù)費(fèi)150元,未租出的車每月需維護(hù)費(fèi)50元.
(1)當(dāng)每輛車的月租金定為3600元時(shí),能租出______輛車(直接填寫答案);
(2)設(shè)每輛車的月租金為x(x≥3000)元,用含x的代數(shù)式填空:
(3)每輛車的月租金定為多少元時(shí),租憑公司的月收益最大,最大月收益是多少元?
為租出的車輛數(shù)租出的車輛
所有未租出的車每月的維護(hù)費(fèi)租出的車每輛的月收益

查看答案和解析>>

同步練習(xí)冊答案