【題目】在平面直角坐標系中,正方形OABC的頂點O在原點。

(1)如圖①,點C的坐標為(,),且實數(shù)滿足,求C點的坐標及線段0C的長度;

(2)如圖②,點FBC上,ABx軸于點E,EF,OC的延長線交于點G,EG=OG,求∠EOF的度數(shù);

(3)如圖③,將(1)中正方形OABC繞點O順時針旋轉,使OA落在y軸上,EAB上任意一點,OE的垂直平分線交x軸于點G,交OE于點P,連接EGBC于點F,求△BEF的周長。

【答案】(1) (2)45°(3)2

【解析】分析:(1)根據(jù)非負數(shù)的性質和二次根式有意義的條件可得b=3,a=-1,即可的點C的坐標,再由勾股定理求得OC的長;(2)過點OOH⊥EFH,證明OEA≌△OEH RtOHFRtOCF,根據(jù)全等三角形的性質可得∠3=4,5=6,又因∠3+∠4+∠5+∠6=∠AOC=90°,即可求得∠EOF=45°;(3)過點OOH⊥EFH,OF,證明△OEA≌△OEHRtOHFRtOCF,根據(jù)全等三角形的性質可得AE=EH,OH=OA,HF=FC,即可得BEF的周長=BE+EH+HF+BF=BE+AE+CF+BF=AB+BC=2.

詳解:

(1)∵b-3≥0,3-b≥0,

∴b=3,a=-1,

∴C(-1,3).

CCD垂直y軸于點D,則OD=3,DC=1,

∴OC=;

(2)過點OOH⊥EFH,

四邊形OABC是正方形,

∴OA=OC,∠A=∠7=∠AOC=90°,AB∥CO,

∴∠2=∠COEEG=OG,

∴∠1=∠COE,

∴∠1=∠2,

OH⊥EF,

∴∠9=∠8=∠A=90°,

△OEA△OEH,

,

∴△OEA≌△OEH(AAS),

∴∠3=∠4,OH=OA;

OA=OC,

∴OH=OC,

∠9=∠7=90°,

Rt△OHFRt△OCF

,

∴Rt△OHF≌Rt△OCF(HL),

∴∠5=∠6,

∠3+∠4+∠5+∠6=∠AOC=90°,

∴2∠4+2∠5=90°,

∠4+∠5=45°,

∠EOF=45°;

(3)過點OOH⊥EFH,OF,

四邊形OABC是正方形,

∴OA=OC,∠10=∠7=∠AOC=90°,AB∥CO,

∴∠2=∠COEPG垂直平分OE,

∴EG=OG,

∴∠1=∠COE,

∴∠1=∠2 ,

OH⊥EF,

∴∠9=∠8=∠10=90°,

△OEA△OEH,

∴△OEA≌△OEH(AAS);

∴AE=EH,OH=OA,

OA=OC,

∴OH=OC,

∠9=∠7=90°,

Rt△OHFRt△OCF,

,

∴Rt△OHF≌Rt△OCF(HL);

∴HF=FC,

∴△BEF的周長=BE+EH+HF+BF

=BE+AE+CF+BF

=AB+BC

=2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一個可以自由轉動的轉盤被平均分成3個扇形,分別標有1、2、3三個數(shù)字,小王和小李各轉動一次轉盤為一次游戲,當每次轉盤停止后,指針所指扇形內的數(shù)為各自所得的數(shù),一次游戲結束得到一組數(shù)(若指針指在分界線時重轉).
(1)請你用樹狀圖或列表的方法表示出每次游戲可能出現(xiàn)的所有結果;
(2)求每次游戲結束得到的一組數(shù)恰好是方程x2﹣3x+2=0的解的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形ABCD的邊長為4,將此正方形置于平面直角坐標系中,使AB邊落在X軸的正半軸上,且A點的坐標是(1,0).

(1)直線經過點C,且與x軸交與點E,求四邊形AECD的面積;

(2)若直線l經過點E,且將正方形ABCD分成面積相等的兩部分,求直線l的解析式;

(3)若直線l1經過點F(﹣,0),且與直線y=3x平行,將(2)中直線l沿著y軸向上平移個單位交軸x于點M,交直線l1于點N,求NMF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點E,F(xiàn)分別在AB、CD上,AE=CF ,且DF=BF; 求證:四邊形DEBF為菱形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC,AP垂直∠ABC的平分線BP于點P.ABC的面積為32cm2,BP=6cm,APB的面積是APC的面積的3AP=________cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A,B兩點在一次函數(shù)圖象上的位置如圖所示,兩點的坐標分別為A(x+a,y+b),B(x,y),下列結論正確的是( )

A.a>0
B.a<0
C.b=0
D.ab<0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,經過原點的拋物線的解析式可以是y=ax2+bx(a≠0)
(1)對于這樣的拋物線:
當頂點坐標為(1,1)時,a=;
當頂點坐標為(m,m),m≠0時,a與m之間的關系式是
(2)繼續(xù)探究,如果b≠0,且過原點的拋物線頂點在直線y=kx(k≠0)上,請用含k的代數(shù)式表示b;
(3)現(xiàn)有一組過原點的拋物線,頂點A1 , A2 , …,An在直線y=x上,橫坐標依次為1,2,…,n(為正整數(shù),且n≤12),分別過每個頂點作x軸的垂線,垂足記為B1 , B2 , …,Bn , 以線段AnBn為邊向右作正方形AnBnCnDn , 若這組拋物線中有一條經過Dn , 求所有滿足條件的正方形邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】周末,小明騎自行車從家里出發(fā)到野外郊游.從家出發(fā)1小時后到達南亞所(景點),游玩一段時間后按原速前往湖光巖.小明離家1小時50分鐘,媽媽駕車沿相同路線前往湖光巖,如圖是他們離家的路程ykm)與小明離家時間xh)的函數(shù)圖象.

1)求小明騎車的速度和在南亞所游玩的時間;

2)若媽媽在出發(fā)后25分鐘時,剛好在湖光巖門口追上小明,求媽媽駕車的速度及CD所在直線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:平面直角坐標系中,A(a,3)、B(b,6)、C(c,1),a、b、c都為實數(shù),并且滿足3b-5c=-2a-18,4bc=3a+10

(1) 請直接用含a的代數(shù)式表示bc

(2) 當實數(shù)a變化時,判斷ABC的面積是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍

(3) 當實數(shù)a變化時,若線段ABy軸相交,線段OB與線段AC交于點P,且SPABSPBC,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案